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Abstract. We use the exponential random graph models to understand
the network structure and its generative process for the Japanese bi-
partite network of banks and firms. One of the well-know and simple
model of exponential random graph is the Bernoulli model which shows
the links in the bank-firm network are not independent from each other.
Another popular exponential random graph model, the two star model,
indicates that the bank-firms are in a state where macroscopic variables
of the system can show high fluctuations. Moreover, the presence of this
high fluctuation reflects a fragile nature of the bank-firm network.
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1 Introduction

Models of network are useful to understand the structural properties as well as
its dynamical behaviours. The approaches to construct models of network can
be classified mainly into two broad categories considering the analogy with the
theories of gases in statistical physics [1]. The two approaches are known as the
kinetic theory approach and the ensemble approach. In kinetic theory approach
one considers the possible mechanisms to replicate some structural properties of
the real-world network. For example, the well-known Barabási-Albert model [2]
considers preferential attachment mechanisms to construct a growing network
with fat tail degree distribution. These models are easy to understand and gives
a qualitative understanding of the network, but have limitation in quantitative
accurate predictions. Thus, these models do not give over all understanding of
the network, each model only mimics very few features of the network.

The other class of models, the ensemble models, are based on rigorous proba-
bilistic arguments with a solid statistical foundation, useful for accurate predic-
tions and quantitative study of the network. These models are based on the con-
cept of statistical ensemble implying a large collection of all possible realizations
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of the network at particular values of the macroscopic observables. A particular
graph in the ensemble of networks appears with a probability P (G) ∝ exp[H(G)],
where H(G) is known as the network Hamiltonian. As the probability is an expo-
nential function of the network Hamiltonian, these models are popularly known
as “exponential random graph (ERG) models”.

The ERG model was first introduced by Holland and Leinhardt [3], based on
the framework laid by Besag [4]. Since the introduction of the ERG models, a
variety of network Hamiltonian has been studied, which include models of ran-
dom network [1], reciprocity model of directed network [1], the two star model of
network [5, 6], and the Strauss model of network with clustering [7, 8]. Far more
complex Hamiltonian that includes endogenous as well as exogenous observables
of the network, has also been studied in the social network literature [9–11].
Moreover, there are many tools such as ERGM [12] and SIENA [13] packages to
fit ERG model with social data. The problem with the complex non-linear Hamil-
tonian is that it cannot be solved exactly, the only linear Hamiltonian model can
be solved exactly in the large system size limit. For non-linear Hamiltonian, it
can be solved approximately either using mean-field theory and perturbation
theory or by numerical simulation.

The ERG model has been studied extensively for monopartite networks ex-
cept few studies in case of bipartite network [14]. In this paper, our focus is on
the Japanese bipartite network of banks and firms. We model the bipartite net-
work using exponential random graph theory. We study the well known Bernoulli
model and two star model to get a deep understanding of the network structure
of the Japanese bipartite network of banks and firms.

2 Data

We use the Nikkei data set for the banks-firms lending-borrowing links in Japan.
Lending data are available only for the listed firms and are restricted in our work
to the long-term loans during 2005. Each node in this bipartite network (firms
and banks) has its financial statements. However, only listed banks have available
financial statements. Therefore, we consider the unweighted and undirected sim-
ple bipartite network for the long-term lending-borrowing links between listed
firms and listed banks during 2005. The network is formed by M = 127 banks,
N = 2, 198 firms and L = 11, 842 unweighted long-term links.

3 Method

3.1 Exponential random graph model

ERG model is a tie-based statistical model for understanding how network topol-
ogy emerges by estimating how ties are patterned (see [9]). Let X = [xij ] be the
adjacency matrix of an unweighted bipartite network. ERG model is the regres-
sion of X with a set of endogenous attributes za and exogenous attributes ze.
za represents the network statistics configuration, for example, the number of
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edges or the number of stars. ze represents the counts of the node attributes,
for example, in case of bank-firm network, the number of links weighted by the
profit of the firm or the bank. The canonical form of ERG model is given by the
following:

PrΘ(X = x) =
1

κ(Θ)
exp

(

∑

a

θa · za(x) +
∑

e

θe · ze(x)
)

. (1)

κ is a normalizing constant that ensures a proper distribution. Normalization
is performed by all possible network realizations, as follows:

κ(Θ) ≡
∑

y∈X

exp

(

∑

a

θa · za(y) +
∑

e

θe · ze(y)
)

. (2)

3.2 Markov chain Monte Carlo (MCMC) sampling algorithm

Let xobs be the observed graph. We would like to solve the moment equation
Eθ(z(X))−z(xobs) = 0, where X represents the networks sampled with MCMC.

MCMC sampling is used to estimate network statistics Eθ(z(X)). The most
commonly used MCMC sampler is the Metropolis-Hasting algorithm, which was
introduced in [15].

The MCMC sampler consists of randomly selecting one dyad, one null dyad
(xij = 0) or one nonnull dyad (xij = 1). Then, with the Hasting probability
P(x → x′)1, the state of the dyad is changed (add a link for null dyad or delete
a link for nonnull dyad). The Hasting probability is given by the following:

P(x → x′) = min

{

1,
Pr′Θ(X = x′)

Pr′Θ(X = x)

}

. (3)

3.3 Stochastic approximation: the Robins-Monro algorithm

Snijders proposed a stochastic approximation based on the Robins-Monro al-
gorithm to obtain the maximum likelihood estimation (MLE) for the ERG
model [16]. Following [9], this approach is robust and does not require any par-
ticular starting point. The stochastic approximation algorithm is based on three
phases as described in the following.

Initialization phase With the initial parameter θ̃, this phase determines the
scaling matrix D0. Let zθ̃(x1), zθ̃(x2), ..., zθ̃(xMi

) be the statistics related to net-

works x1, x2, ..., xMi
generated with the MCMC sampler based on θ̃. Let Eθ̃ be

the expectation vector of the network statistics, and let D be the covariance ma-
trix. The scaling matrix is defined as D0 = diag(D), and θ is initialized for the
second phase, as follows: θ0 = θ̃−a ·D−1

0 · (Eθ̃−z(xobs)). a is defined as the gain
factor, which controls the size of the updating steps (a = 0.1 at initialization).

1 x and x′ are network states at simulation steps t and t+1, respectively.
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Optimization phase The goal is to solve the moment equation Eθ(z(X)) −
z(xobs) = 0 based on the Newton-Raphson minimization scheme. The goal is
then to update θ under different sub phases, where each sub phase r reduces the
gain factor ar.

Each sub phase r contains m simulation steps. At simulation step m + 1, a
network is sampled based on the MCMC sampler with θm. The update process
is defined as follows:

θm+1 = θm − ar ·D−1
0 · (z(xMCMC)− z(xobs)). (4)

At the end of sub phase r, the gain factor is updated, ar+1 = ar/2. This
optimization procedure is iterated until convergence occurs.

Convergence phase We want to check whether the returned value θ̂ from the
optimization phase is close to the true MLE. Therefore,Mc networks are sampled
based on the MCMC sampler with a value of θ̂. The convergence condition is
reached when

−0.1 ≤ E
θ̂
− zobs

SD
θ̂

≤ 0.1, (5)

where SD
θ̂
is the standard deviation of the statistics for the sampled net-

works.

4 Results

4.1 Bernoulli model of a bipartite network

In the early 1950s, Solomonoff and Rapoport introduced the first well-known
model of network, random graph or Bernoulli model of network [17], that was
later famously studied by Erdős and Rényi [18]. This is the simplest model
of the network and the analytic solution for the monopartite network using
exponential random graph technique is shown in [1]. Here we extend the study
for a bipartite network. In the Bernoulli model of a bipartite network, links
are formed independent of each other and the expected number of links 〈E〉 is
the only known observable. The Hamiltonian for this model can be written as
H(G) = θE(G), where θ is the associated parameter with the number of links
or it can be thought as inverse temperature using the analogy with equilibrium
statistical mechanics. Using the above expression of the network Hamiltonian,
the probability that the graph G is in state G can be written as

P (G = G) =
eθE(G)

Z

where, the normalization constant Z =
∑

G eθE(G) is known as the partition
function.
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Fig. 1. The variation of connectance p of the Bernoulli model is plotted as a function
of θ for the Japanese bipartite network of banks and firms. The solid line represents
the exact solution and red circles are the Monte Carlo simulation results. The filled
red circle indicates the simulation result for the observed snapshot of the Japanese
bipartite network of banks and firms.
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A bipartite network consisting of two distinct node set N ,M can be repre-
sented by a rectangular adjacency matrix with the elements Aij = 1 {1 ≤ i ≤
N ; 1 ≤ j ≤ M} if and only if the i-th node of one node set is connected to the
j-th node of the other set and Aij = 0 otherwise. The total number of links of

the bipartite network E(G) =
∑N

i=1

∑M
j=1 Aij .

Now, we can calculate the partition function as follows:

Z =
∑

{Aij}

e
θ

N∑

i=1

M∑

j=1

Aij

=

N
∏

i=1

M
∏

j=1

1
∑

Aij=0

Aij =

N
∏

i=1

M
∏

j=1

(1 + eθ) = (1 + eθ)NM

From the partition function, we can calculate all the network observables:
The free energy of the network F = lnZ = NM ln

(

1 + eθ
)

The expected number of edges

〈E〉 = ∂F

∂θ
= NM

eθ

(1 + eθ)

This gives

θ = ln[
〈E〉

(NM − 〈E〉) ]
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Fig. 2. The degree distributions P (k) are plotted against degree k for (a) banks and (b)
firms. Empirical, simulated and analytic results are indicated with different legends.

Fig 1 shows the connectance p = 〈E〉/MN as a function of θ for the model.
The results indicate an excellent match between the analytic solution and simu-
lation results. Simulation results are obtained using Markov chain Monte Carlo
method as explained in section 3. The data points are averaged over 1000 inde-
pendent runs. The maximum standard deviation in the data points is found to
be σ = 0.001. For the Japanese bipartite network of banks and firms the ana-
lytic result gives θ = 3.1167 and our simulation estimates θ = 3.1166 ± 0.0015
reflecting the sparse nature of the network.
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The degree distribution p(k) implies the number of nodes with degree k of
this model has binomial form. For the bank firm network, the degree distribution
of the banks can be written as Pbank(k) =

(

N
k

)

pk(1 − p)(N−k) and for firms

Pfirm(k) =
(

M
k

)

pk(1 − p)(M−k). As can be seen from the Fig. 2, the degree
distribution of the model does not fit with the empirical distribution which has
a much broader shape for both the bank and firm. We conclude that the Bernoulli
model is a poor model for the Japanese bipartite network of banks and firms.

4.2 Two star model of a bipartite network

The two star model is an ERG model where the expected values for the total
number of links and total number of two star (.i.e. path length 2) are constant.
The Hamiltonian for the model of a bipartite network can be written as

H(x) = θLZL(x) + θ2SBZ2SB(x) + θ2SFZ2SF (x)

Where, the total number of links

ZL(x) =

N
∑

i=1

M
∑

j=1

Aij

The total number of bank two star

Z2SB =
1

2

M
∑

i=1

N
∑

j,k=1

(1− δjk)AijAik =
1

2

M
∑

i=1

N
∑

j,k=1

AijAik − 1

2

M
∑

i=1

N
∑

j=1

Aij

The total number of firm two star

Z2SF =
1

2

N
∑

i=1

M
∑

j,k=1

(1− δjk)AijAik =
1

2

N
∑

i=1

M
∑

j,k=1

AijAik − 1

2

N
∑

i=1

M
∑

j=1

Aij

θ’s are the associated parameters to the network observables.

The Hamiltonian H can be written in terms of the adjacency matrix as
follows:

H =
1

2

N
∑

i=1

M
∑

j=1

Aij(2θL − θ2SB − θ2SF + θ2SB

N
∑

k=1

Aik + θ2SF

M
∑

k=1

Aik)

Using mean-field technique of statistical physics we can set the average connec-
tion probability between any two nodes is p = 〈Aik〉 = Aik by ignoring the local
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fluctuations.

H =
1

2

N
∑

i=1

M
∑

j=1

Aij(2θL − θ2SB − θ2SF + θ2SB

N
∑

k=1

〈Aik〉+ θ2SF

M
∑

k=1

〈Aik〉)

=
1

2

N
∑

i=1

M
∑

j=1

Aij(2θL − θ2SB − θ2SF + θ2SBNp+ θ2SFMp)

= Θ

N
∑

i=1

M
∑

j=1

Aij

Where we define Θ = 1
2 (2θL − θ2SB − θ2SF + θ2SBNp+ θ2SFMp)

As the Hamiltonian becomes linear with Aij , we can easily calculate the
partition function κ = [1 + exp(Θ)]NM

From the partition function we can calculate other network observables:
Free energy F = ln(κ) = NM ln[1 + exp(Θ)]

Total expected number of links < ZL >= ∂F
∂θL

= NM exp(Θ)
1+exp(Θ)

This gives

p =
< ZL >

NM

=
exp(Θ)

1 + exp(Θ)

=
1

2
[1 + tanh(Θ/2)]

=
1

2
[1 + tanh{0.25(2θL − θ2SB − θ2SF + θ2SBNp+ θ2SFMp)}]

For convince let us define B = 0.25(2θL− θ2SB − θ2SF ) and 2J = 0.25(θ2SBN +
θ2SFM).

It gives,

p =
1

2
[1 + tanh(B + 2Jp)]

The solution of this transcendental equation is well known [1]. It has only
one solution if J ≤ 1, but if J > 1 it may have either one solution or three
solutions (where outer two are stable solution). It can be shown [19] that the
three solutions appears when B+(J) < B < B−(J), where

B+(J) =
1

2
log[

√
J +

√
J − 1√

J −
√
J − 1

]−
√
J√

J −
√
J − 1

and

B−(J) =
1

2
log[

√
J −

√
J − 1√

J +
√
J − 1

]−
√
J√

J +
√
J − 1

We show the phase diagram of the model in (B − J) plane in Fig. 3. It has
three distinct regions - high density, low density and co-existence phase. Our
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Fig. 3. The phase diagram for the two star model. The red circle indicates the position
for the Japanese bipartite network of banks and firms for the year 2005.

Table 1. Estimated values of the coupling parameters of the two star model for the
Japanese bipartite network for the year 2005.

Parameters Estimated values Standard deviation

θL −3.974 4.040× 10−3

θ2SF 6.307× 10−2 3.445× 10−4

θ2SB 3.334× 10−3 1.328× 10−6



10 A. Chakraborty et al.

estimates of the parameters are given in Table 1. The values of the estimated
parameters give B = 2.004 and J = 1.917. As can be seen from Fig. 3 at these
parameter values, the system can show high fluctuation in behaviours having
two coexisting phase. We conclude that the Japanese bipartite network of banks
and firms are close to the transition point which indicate a fragile nature of the
system.

-15 -10 -5 0
θ

L

0.0

0.2

0.4

0.6

0.8

1.0

p

Fig. 4. The hysteresis plot for the two star model of the bank-firm network. The black
curve indicates the variation of connectance p when θL increases from low to high and
red curve indicates when θL decreases from high to low. The values of θ2SF and θ2SB

are kept constant as in Table 1. The error bars indicate standard deviation in p.

This model exhibits hysteresis behaviour as shown in Fig 4. The finite area
within the loop is a signature of a discontinuous transition (.i.e. first order). The
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first order transition is very dangerous for an economic network. It indicates the
network can collapse suddenly if there is a slight change in the parameter values.
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Fig. 5. The degree distributions P (k) are plotted against degree k for (a) banks and
(b) firms. Empirical and simulated results are indicated with different legends.

Fig. 5 shows the degree distribution for the two star model. The distribution
has a bi-modal nature [19]. Although the second peak near k = N for the
degree distribution of banks is very small. This model also can not replicate the
empirical nature of the degree distribution. In the future, we will consider more
complex Hamiltonian that includes endogenous as well as exogenous parameters
to describe the system in much better way.

5 Conclusions

We have studied the Japanese bipartite network of banks and firms using the
Bernoulli model and the two star model. The Bernoulli model assumes that
links are formed between banks and firms independently. However, this model
does not fit well with the empirical network structure indicating a relationship
present between the network structure and some hidden variables. As a first
approximation, we consider two star model that assumes adjacent links play
role in the link formation. This model indicates that the Japanese bipartite
network of banks and firms has a fragile nature. Although this model also can
not capture the empirical network structure fully.

In the future, we would like to consider the more complex Hamiltonian with
endogenous as well as exogenous network variables. We believe such complex
Hamiltonian will be useful to understand the network structure in detail.
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