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Abstract. In social annotation, the vocabulary of tags continues to in-
crease following so-called Heaps’ law. However, it has not been exten-
sively studied how the variation of combinatorial usage of tags increases
as the web service grows. We introduce the idea of “combinatorial nov-
elty” and investigate how it emerges in both the baseline mathematical
model and the empirical web data.
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1 Introduction

Analogous to the biological evolutionary systems, we will study the evolution of
web services in terms of selection, mutation and adaptation. Instead of random
processes behind the biological systems, the web services have human activities
behind. By studying a large data of a web service, we reveal the essential dif-
ference between human activities and random processes. At the same time, we
hope to derive new evolutionary concepts from the web evolutionary systems
that are applicable to biological phenomena. In case of social tagging systems,
we know that the development of new keywords follows Heaps’ law, and the size
distribution of tag usage follows Zipf’s law. [1] An approach of this short paper
is to extend Heaps’ law to examine the laws of new pair creation; we discuss how
new combinations of keywords emerge as the web service grows.

2 Model

The Yule–Simon process is a stochastic process which has been proposed to
explain the growth process of evolutionary systems in general [2, 3]. The evolu-
tionary process is described in terms of mutation and selection. In the previous
works, we have analyzed a large data of the “RoomClip” service. In this ser-
vice, users upload their photos with a set of tags, e.g. a photo of kitchen with
“kitchen”, “white” and “breakfast” tags. By applying YS model to this dataset,
we (Y.H.) proved that the process shows Heaps’ law and the exponent explains
well the resulting size distribution of individual tag usage. Here, we focus more
on the evolution of the new pairs rather than of a tag itself. Namely, how many
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Fig. 1. Evolution of the time series of tag (circles) pairs. Given the current time t, gray
circles have been used once or more before t. With a probabilistic trial at every time
step, a novel tag (the red one) is introduced to the time series at novelty rate α.

number of new pairs are created in each submission of a photo is the target of
our study here. We name it the evolution of combinatorial vocabulary.

The original YS model generates a series of symbols { σ1, σ2, σ3, . . . , σt },
where σt designates a tag drawn from a pool of tags with a probability 1−α. A
new tag is introduced with a probability α. We now view a series of symbols as
a series of pairs of symbols. The length of the time series extends one by one at
each time step; e.g. (ab)(ab)(ac)(dc)..., where two symbols in each parenthesis
composes a pair of tags. The schematic diagram of how this abstracted tagging
action proceeds is shown in Fig. 1. This “pairwise Yule–Simon process” displays
the power-law usage distribution, known as Zipf’s law, and the linear growth of
the vocabulary size, obviously. However, there is one unique thing, i.e. a pairwise
novelty, which is defined as a new pair of tags that has never happened in the
current time series. A creation of new pair does not require a new tag to be
introduced. A combination of already existing tags can provide new pairs. At
what rate the size of the pairwise vocabulary grows? Do we find any empirical
law, namely, the “second-order Heaps’ law” there?

3 Analytical view

There can be two mechanisms for creating pairwise novelty; one is generated by
coupling with a novel tag and existing tags and the other one is combination of
existing tags. Let us consider two kinds of tags i and j existing in the current
time series, and the birth time of i—ti precedes tj . We denote the number of
co-occurrences of i and j at time t by eij(t). Then, the probabilities that eij(t)
is equal to zero and becomes one are written, respectively, as follows:

P [eij(t) = 0] =

{
1− ni(tj)

A(tj)

} t∏
τ=tj+1

[
α+ (1− α)

{
1− ni(τ)

A(τ)

nj(τ)

A(τ)

}]
, (1)

P [eij(t)→ 1] = P [eij(t− 1) = 0]× ni(t− 1)

A(t− 1)

nj(t− 1)

A(t− 1)
, (2)

where ni(t) is the number of total usage of i at t. The first {· · · } part of Eq. (1)
means the probability that tag j does not co-occur with existing i when j is used
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Fig. 2. Probability configuration of Eq. (3) for t = 106. ti < tj and they are bounded
by the upper limit t. The color hue indicates the value of the probability for given ti
and tj .

for the first time. The second part, the product, means the probability that tag
i and j never co-occur after the introduction of j throughout to time t.

Using the mean-field solution of individual tag growth, ni(t) ≈ 2(t/ti)
1−α[4],

and in the asymptotic limit of small α, we obtain an apparently simple form of
the probability (2) as follows:

P [eij(t)→ 1] ≈ 1

titj

(
1− 1

ti

)(
1− 1

titj

)t−tj−1

. (3)

Figure 2 shows the example of the probability configuration of Eq. (3) in terms of
ti and tj for t = 106.The prerequisite ti < tj blanks the right-bottom triangular
area. Let us remind that tags having a smaller birth time tend to be used more
frequently than those having a larger birth time by preferential attachment [5].
So, if both i and j would be such old and well-established tags, it is unlikely
to observe that they never co-occur until t (� ti, tj) (see the dark left-bottom
area). On the other hand, if both i and j are rather recent (close to t) ones, it is
also difficult for them to co-occur at t (see the dark right-top area); because they
have not grown sufficiently to be chosen simultaneously among other competent
tags.

In order to estimate the growth rate of the combinatorial vocabulary of the
model, we need to sum up Eq. (3) for all pairs of i and j as follows:

P [e∗∗(t)→ 1] =

K(t)∑
i

K(t)∑
j>i

P [eij(t)→ 1] . (4)

This is the rate at which an arbitrary pair of existing tags is used for the first
time—combinatorial novelty rate, which is what we want to quantify. Integrating
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Fig. 3. Growth of the pairwise vocabulary size in the pairwise Yule–Simon process
(left) and the empirical data (middle and right). Gray, red, and black curves are the
total pairwise vocabulary size, the contribution by the combination of existing tags,
and the contribution by the introduction of new tags. Dotted lines are the upper bound
of the total size, mentioned in the main text.
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Fig. 4. Time evolution of the pairwise novelty rate—the time differential of Fig. 3. The
dotted line in the empirical result shows the novelty rate of a tag itself.

Eq. (4) with respect to time, we will know how the combinatorial vocabulary
grows. However, the part of (1− 1/titj)

t−tj−1 in the equation is apparently im-
practical to be approximated asymptotically. So, we perform the simulation of
the pairwise Yule–Simon process directly, investigate the combinatorial vocab-
ulary growth in the model numerically, and compare with the result from the
empirical data analysis in the next section.

4 Simulation & empirical results

We set the final length of the time series to T = 107 and the novelty rate to
α = 0.05 (comparable to the empirical value in the next paragraph). As the
result, the final vocabulary size K(T ) reached approximately 5 × 105. The left
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Fig. 5. Weighted probability configuration. The left panel is the result of the model.
Note that we have to weight the probability (3) by titj when using logarithmic bins
in order to cancel the counting bias. The right panel is the empirical result, in which
we counted the number of pairs used for the first time in the latest 106 pairs out of
approximately 2.5× 107 pairs in total.

panel of Fig. 3 shows the growth of the pairwise vocabulary against time in the
model. The total pairwise vocabulary size (shown by the gray curve) is upper
bounded by the number of time steps (shown by the dotted line). In the initial
stage, the growth of the pairwise vocabulary is mostly dominated by the increase
of tag vocabulary itself—that is, a new pair is created by introducing a new tag,
whose contribution is shown by the black curve. This is in proportion to time,
αt. However, after the tag vocabulary becomes large at around 106 ∼ 107 time
steps, the contribution by combinatorial novelties between existing tags (shown
by the red curve), which is what we expected by Eq. (4), overtakes the former
one.

Concerning the data coverage of the actual tagging behavior in RoomClip, we
noticed that the number of photo-postings, annotations, and the final vocabulary
size are fitted approximately as 1.5× 106, 7.4× 106, and 3.3× 105, respectively.
The novelty rate is, in general, relatively higher at the early stage of the service
and gradually goes down when the service gets matured. The latest novelty
rate in the data is below 0.05. The middle and right panels in Fig. 3 show the
growth of the pairwise vocabulary size. The number of tags used in a photo varies
significantly post by post. So, we need to take such a varying increase of possible
combinations of tags into account when comparing with the model. We thus
re-defined the “effective time scale” as the cumulative number of possible pairs
per each post (the right panel) instead of the number of posts (the middle).
For example, if a post contains 5 tags, the effective time step is incremented
by
(
5
2

)
. As a result, the effective time extends to 2.5 × 107 pairs in total. The

empirical result exhibits a similar tendency to the model with respect to the
crossover phenomena between the contributions by combinatorial novelties and
introduction of new tags.
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However, the empirical growth in the effective time scale seems to deviate
downward from the upper bound, whereas the growth curve in the model scales
linearly with time. At the same time, evolution of the combinatorial novelty rate
depicted in Fig. 4 exhibits that the combinatorial novelty can be sustained while
the creation rate of new tags is decreasing as the time elapses. So our hypothesis
here is that a mechanism of creating novelty is gradually shifting from a single tag
event to combinatorial tag events, in which the combinatorial tag events follows
the selection bias to suppress the creation of novel tag-pairs in the actual tagging
behavior. We speculate that this is attributed to that the more recent tags will
be combined to use in the service. Figure. 5 shows the probability configuration,
which we explained in Fig. 2, in the model (left) and the empirical data (right).
As for the result of the model, we have to weight the probability (3) by titj
when using logarithmic bins to compare with the empirical result. The empirical
result exhibits that creation of novel pairs are gathered around the combination
of large ti and tj .

5 Discussion

The web services are artificial evolving ecosystems that teaches us how novelty
develops in time, especially when we can deal with a large dataset from the
beginning of a service. In the field of artificial life, novelty search dynamics and
algorithm has been a big theme. So far Darwinian evolution (mutation and se-
lection) is accepted as a main concept also for the artificial evolving systems.
Genetic algorithm is an example. Recently, particle swarm optimization (called
PSO [6], Swarm intelligence [7]) or evolving neural nets by using “NeuroEvolu-
tion of Augmenting Topologies” (called NEAT [8]) have slightly new aspects. But
none of them have achieved open-ended evolution that creates novelties without
being stacked.

Here in this paper, we have newly introduced a production of novelty by
combination. Combination of tags can change the original meanings of tags to
create a new meanings. This can be a new mechanism of open-ended evolution.
In addition to this, we have updated the Yule–Simon process by introducing
a tag-formation. This formation can be made further sophisticated to include
more complex nature of producing novelties in a system.
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