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Abstract. The spring-electric model is a useful tool to visualize a large-
scale complex network. However, information on the flow of directed net-
work may not be property reflected because links are basically treated as
undirected. Here, we propose a new visualization method with an explicit
account of network flow structure information by combining Helmholtz-
Hodge decomposition and the spring-electric model. We then demon-
strate its effectiveness by adopting actual Japanese production flow net-
work as a test ground. The Helmholtz-Hodge decomposition enables us
to break down flow on a directed network into two flow components: po-
tential flow and circular flow. The potential flow between a pair of nodes
is given by difference of their potentials, and hence, the potential of a
node shows its hierarchical position in a network. On the other hand, the
circular flow component illuminates feedback loops built in a network.
We also identify dominant clusters of firms forming feedback loops by
applying a flow-based community detection method to the extracted cir-
cular flow network. We find that both hierarchical and loop structures
coexist within the major industries such as construction, manufacturing,
and wholesales.

Keywords: Visualization · directed graph · Helmholtz-Hodge decom-
position · community detection · puroduction network.

1 Introduction

It is difficult to analyze all connections in complex networks, because of their
multiplicity and complexity. Visualization, which is gaining popularity owing to
the recent development of graphics technology, is a useful tool with which to
illuminate structural properties of networks. Appropriate depiction of a complex
network greatly helps in grasping its intricate structures by providing an intuitive
understanding. Various algorithms have been developed to visualize networks. A
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spring-electric model is adopted in which pairs of nodes with direct relations are
physically connected by springs, and nodes in any pair repel each other through
a repulsive Coulomb force [6]. The attractive force of the spring keeps intimate
nodes close in space. On the other hand, the repulsive Coulomb force tends to
distribute firms uniformly over the available space and prevents entanglement of
the network. Although the spring-electric model is a useful method of visualiza-
tion, information on the flow of the network can’t be reflected since the links are
basically treated as undirected. A visualization method considering the direction
of the link has also been proposed. [5] In this study, we propose a visualization
method considering the information of the hierarchy and circular structure of the
network, and report the results applied to actual Japanese production network.
The proposed method first decomposes the network into a potential flow network
and a loop flow network by Helmholtz-Hodge decomposition. This decomposi-
tion determines the Helmholtz-Hodge potential corresponding to the hierarchical
position in the network for each node of the network. Layout of visualization is
determined by the spring electric model with adding constraints of coordinate
corresponding to this Helmholtz-Hodge potentials. In the previous research [6],
determining the layout corresponds to extracting the hierarchical structure, but
in the proposed method, first of all, a hierarchical structure is uniquely obtained
by Helmholtz-Hodge decomposition and then a layout according to it is deter-
mined.

Very recently, we have studied [3] structure of a Japanese production net-
work with one million firms and five million supplier-customer links. We first
constructed a directed network from the actual data of interfirm transaction re-
lations and found that they form a tightly-knit structure with a giant strongly
connected component surrounded by two half-shells constituting incoming-flow
and outgoing-flow components for the core. The objective of this study is to
advance the previous empirical analysis [3] on the industrial flow structure em-
bedded in microscopic supplier-buyer relations with a special emphasis on its
hierarchy and circularity. Hierarchy of the production network is expected to
emerge from self-organization of supply chain in the industrial system. We also
note that inner loops of production, giving rise to a nonlinear feedback mech-
anism to complicate dynamics of the industrial system, can be an engine for
economic growth.

2 Methods

2.1 Helmholtz-Hodge decomposition

To delve further into the flow structure of a directed network, we take advantage
of a mathematical tool called the Helmholtz-Hodge decomposition [2,7]. It allows
us to decompose flow on a directed network into a potential flow component and
a circular flow component. In general, one can write flow Fij running from node
i to node j as

Fij = F
(p)
ij + F

(c)
ij (1)
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The first term F
(p)
ij on the right hand side of Eq. (1) denotes the potential flow

from node i to node j which is given by

F
(p)
ij = wij (φi − φj) , (2)

where φi is the Helmholtz-Hodge potential associated with node i and wij is
a positive weight for linkage between nodes i and j. In the potential flow net-
work, nodes are perfectly ranked; the potential flow thereby runs from a node
with higher potential to a node with lower potential. On the other hand, the

second term F
(c)
ij denotes the circular flow component in which incoming flow

and outgoing flow are exactly balanced at each node:∑
j

F
(c)
ij = 0 , (3)

so that there is no hierarchy among nodes in the circular flow network.
In practice, one can determine the potential φi for every node by minimizing

the squared difference between the actual flow and the potential flow:

I =
1

2

∑′

i<j

w−1ij (Fij − F (p)
ij )2 (4)

where the double summation excludes pairs of nodes which are not connected.
Subtracting the potential flow thus determined from the actual flow leaves the
loop flow. In addition, to remove arbitrariness in the potential determination,
we impose the following condition on φi:∑

i

φi = 0 . (5)

Here we assume that the flow structure of a directed network is given by

|Fij | =


1 (singly connected in one way)

0 (doubly connected in both ways)

0 (not connected)

(6)

If volume of each transaction was available, we could this simplified flow structure
with the actual one. Also we assume that the weight wij takes the following values
depending on how the two nodes are connected:

wij =


1 (singly connected in one way)

2 (doubly connected in both ways)

0 (not connected)

(7)

The Helmholtz-Hodge potential of nodes in a directed network identifies their
hierarchical positions in the flow structure. In contrast, the circular flow compo-
nent illuminates feedback loops built in the system.
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2.2 Flow based community detection

Community detection is widely used to elucidate structural properties of large-
scale networks. In general, real networks are highly non-uniform. Community
detection singles out groups of nodes densely connected to each other in a net-
work to divide it into modules. This enables us to have a coarse-grained view on
structure of such complicated networks. The map equation method [9] is one way
to detect communities in a network. This method is found to be one of the best
performing community detection technique when compared with others [8]. It is
a flow-based and information-theoretic method depending on the map equation
defined as

L(C) = qyH(C) +

m∑
i=1

pi�H(Pi) . (8)

Here L(C) measures the per step average description length of dynamics of
a random walker migrating through links between nodes of a network with a
given node partition C = {C1, · · · , C`} and consists of two parts. The first
term arises from movements of the random walker across communities, where
qy is the probability that the random walker switches communities and H(C)
is the average description length of the community index codewords given by
the Shannon entropy. The second term arises from movements of the random
walker within communities, where pi� is the fraction of the movements within
community Ci and H(Pi) is the entropy of codewords in module codebook i.

If the network has densely connected parts in which a random walker stays
long time, one can compress the description length of the random walk dynamics
on a network by using a two-level codebook for nodes adapted to such a commu-
nity structure, an analogy to geographical maps in which different cities recycle
the same street names such as main street. Therefore, obtaining the best com-
munity decomposition in the map equation framework amounts to searching for
the node partition that minimizes the average description length L(C). The code
of the map equation algorithm is available at http://www.mapequation.org.

2.3 Visualization based on a spring-electric model

A spring-electric model is adopted in which pairs of nodes with direct relations
are physically connected by springs, and nodes in any pair repel each other
through a repulsive Coulomb force. The attractive force of the spring keeps in-
timate nodes close in space. On the other hand, the repulsive Coulomb force
tends to distribute firms uniformly over the available space and prevents en-
tanglement of a network. We then take full advantage of a molecular dynamics
(MD) method [1, 4] for an optimized configuration of nodes in the model. The
ground state in the model is a leading candidate for this configuration. The MD
simulation works well to reproduce an ordered structure, with the lowest-energy
forms such as crystals of materials generated through slow cooling, starting from
any initial configuration. We expect that the simulation is also successful in vi-
sualizing the network.
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The interaction force between nodes l and m for the model is explicitly
written as

F (rlm) = −klmrlm +
qlqm
r2lm

, (9)

where klm is the spring constant for the attraction between the nodes. If the
nodes are directly connected, klm = k; otherwise klm = 0. ql denotes the
Coulomb charge for node l. Here we neglect the direction of links (flow of goods
or money) and assume that ql and klm take on identical values for every node
and pair, respectively.

3 Results and Discussion

The present analysis is based on a big data of 4,974,802 transaction relations
between 1,066,037 firms in Japan which was collected by the Tokyo Shoko Re-
search, Ltd. in 2016.3 This data virtually covers whole industrial activities in
Japan. We regard firms as nodes and transaction relations between them as
directed links spanning from suppliers to customers to construct the latest pro-
duction network in Japan. Since information on the volume of each transaction
is not available, we assume that all the links have the same weight.

To elucidate flow structure in the TSR transaction network, we begin with
a bow-tie decomposition of the network as has been widely used to understand
the structure of various complex networks including the world wide web and
metabolic networks. The decomposition classifies nodes in a directed network
according to the way in which they are mutually connected: IN component,
GSCC (Giant Strongly Connected Component), OUT component, and others.
The GSCC is the largest group of nodes in which any pairs of nodes are connected
bidirectionally. The IN component is a collection of nodes which have a path to
the GSCC, but no reverse path to come back. The OUT component is defined
in the other way around, that is, a collection of nodes which are reachable only
from the GSCC. The TSR transaction network is decomposed into 219,927 IN
components, 530,174 GSCC components, 278,880 OUT components and 37,056
Others.

We obtained an optimized layout of the network in three-dimensional space
with information of the Helmholtz-Hodge potential obtained for individual nodes.
The results visualized in Fig 1 and 2. Nodes are aligned in the z direction ac-
cording to their values of the Helmholtz-Hodge potential; basically, transaction
flows from top to bottom. On the other hand, the x and y coordinates of nodes
are determined by minimizing the potential energy in a spring-electric model.

The hierarchical flow is dominant in the IN component, which has mainly
one-way flow to the GSCC out of its definition. This is also true for the OUT
component. On the other hand, the GSCC has more complicated flow structure;
both hierarchical and circular flow components coexist in it. For the purpose of

3 This is the largest connected component in the network obtained from the original
data, containing 99.3% of all active firms listed in the data.
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Fig. 1. The IN component (red), GSCC (green), and OUT component (blue) ofc the
TSR transaction network visualized in three-dimensional space. Nodes are aligned in
the z direction according to their values of the Helmholtz-Hodge potential; basically,
transaction flows from top to bottom. On the other hand, the x and y coordinates of
nodes are determined by the energy minimum principle with a spring-electric model.
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Fig. 2. Half-cut cross sections of the 3D views of the TSR networks as shown in Fig. 1.
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this study, therefore, we concentrate on the flow structure of the GSCC, espe-
cially its circularity. To identify important loop structure in the TSR transaction
network, we apply the map equation method for community detection to the cir-
cular flow network which is obtained from GSCC of the TSR transaction network
by Helmholtz-Hodge decomposition. The total number of communities is 18,660
and the largest community has approximately 5,000 firms. These communities
are dense parts of the circular structure in the network. The 10 largest com-
munities are illuminated in Fig. 3 with the same node configuration as in Figs.
1 and 2. Nodes are aligned in the z direction according to their values of the
Helmholtz-Hodge potential.
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Fig. 3. The 10 largest communities in the circular flow network on the GSCC of the
transaction network, visualized in three-dimensional space with three different points
of view. The same configuration of firms is used as in Fig. 1.

One can characterize these 10 communities by industrial and regional affili-
ations of their constituent firms. They are divided into two contrastive groups.
The first, second, fourth and fifth largest communities are featured by manu-
facturing and wholesales industries; medical, health care & welfare industry is
additionally important for the fourth community. On the other hand, the re-
maining 6 communities are featured by construction industry. Also all the major
communities have prominent regional characteristics. The manufacturing and
wholesales dominant communities are basically metropolitan communities ex-
cept for the second largest community in which Hokkaido and some provincial
prefectures play a key role. In contrast, distribution of the regional affiliations
in the construction dominant communities are well localized at prefecture level.

The community 1, 2, 4, and 5 are all communities which manufacture and
wholesales dominates, but one can extract difference among them by using more
detailed classification. The community 1 includes many manufacture and whole-
sales of textile and apparel. The community 2 includes fisheries cooperative,
wholesales and retail trade of seafood, manufacture of food of seafood. The com-
munity 4 includes Medical and health services, manufacture and wholesales of
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pharmaceutical products. Most of medical and health services are general hospi-
tals and clinics. The community 5 includes many manufacture and wholesales of
metal products and construction. In this way one can characterizes manufacture
and wholesales communities by product which well related community. Although
the community is an extracted dense part of loop flow network, it includes man-
ufacture, wholesales and retail trade and form hierarchical structure of product
generally called supply chain. The community 3, 6, 7, 8, and 9 are communities
which construction dominates. Although industry distribution of the construc-
tion communities similar to each other, it can be characterized by its locality. In
addition, firms contributing to the flow from downstream to upstream are not
the main industries of the supply chain, but are complementary industries (road
freight transport, equipment installation work, etc.).

From these results, we found that within the community there are a hierar-
chical supply chain consisting of main industry of the community and a circular
structure mainly consisting of industries other than the main industry.

4 Conclusion

The comprehensive dataset of interfirm transaction relations in Japan enabled us
to study the industrial flow structure of the nations production network with a
sound microscopic foundation. Especially we emphasized its hierarchy and circu-
larity. By adopting the Helmholtz-Hodge decomposition, we separated the flow
structure of the GSCC of the transaction network into two components: poten-
tial flow and circular flow. The potential flow between a pair of firms is given
by difference of their potentials, and hence, the potential of a firm identifies its
hierarchical position in the transaction network. On the other hand, the circu-
lar flow component illuminates feedback loops built in the network. The layout
was calculated and visualized by the spring electric model with the constraint
condition corresponding to the Helmholtz-Hodge potential. We also identified
dominant clusters of firms forming feedback loops by applying the map equation
method to the extracted circular flow network. We found that both hierarchi-
cal and loop structure coexist within the major industries such as construction,
manufacturing, and wholesales.
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