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Abstract. This paper presents the driving forces behind the formation
of ties within the major communities in the Japanese nationwide network
of production, which contains one million firms and five million links be-
tween suppliers (“upstream” firms) and customers (“downstream” firms).
We apply the Infomap algorithm to reveal the hierarchical structure of
the production network. At the second level of the hierarchy, we find a
reasonable community resolution, with the community size distribution
following a power law decay. Then, we estimate the tie formation within
100 communities of different sizes. The studied model considers a large
set of attributes, including both endogenous attributes (network motifs,
e.g., stars and triangles) and exogenous attributes (economic variables,
e.g., net sales and firm size). The estimation results show that the con-
sidered model converges and presents a high goodness of fit (GoF) for all
communities. Moreover, it is found that the forces explaining link forma-
tion between suppliers and customers differ among communities. Some
attributes, such as reciprocity, popularity, activity, location homophily,
bank homophily and sales statistics, are common drivers of internal link
formation for most of the studied communities. However, transitivity is
rejected as a significant influencing factor for most communities, reflect-
ing an absence of a sense of trust and reliability between firms with a
common partner. Finally, we show that sector homophily does not serve
as an obvious mechanism of partnership at the community level in the
production network.
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1 Introduction

Recent economic phenomena, such as multiple unexpected global crises, have mo-
tivated scientists to consider the economy as a complex system. Agents (house-
holds, banks, firms, etc.) interact in economic networks, determining and con-
tributing to the emergence of macrofluctuations in the economy. The core of an
economy is the production network, in which firms exchange goods and services
(intermediate goods) and produce goods for consumption by final consumers
(households or others). Such networks were considered by [1] and [2], who showed
how idiosyncratic shocks at the microlevel lead to aggregated business cycle fluc-
tuations. Beginning in the last decade (see, for example, [3]), many works on
production networks have emerged. Some works have looked at the topological
characteristics of production networks, while others have analyzed the dynamics
of link formation between “upstream” and “downstream” firms.

Several econophysics studies have characterized the topology of production
networks, such as the works of [3] and [4], who studied the U.S. and Japanese
production networks, respectively. The main findings in the literature include
the scale-free nature of the degree distribution, disassortative mixing, and the
Zipf distribution of firm size. From another perspective, [5] specified the topology
of the supplier-customer network of Japan in terms of its community structure.
This analysis was extended by [6], who showed that the topology of the Japanese
production network is better fitted by a walnut structure than by a bow-tie
structure. This research was based on an analysis of the hierarchical structure
of the communities in the nationwide Japanese production network.

Having identified the major empirical characteristics of production networks,
researchers have been faced with the challenge of understanding how these prop-
erties emerge3. Addressing such research questions requires the estimation of link
formation, in which challenges arise due to the peer effect. These problems were
enumerated by [7]; the major concerns are related to the identification problem4

and the endogenous network problem5. [8] proposed a flexible and powerful class
of models to deal with these problems: so-called exponential random graph mod-
els (ERGMs).

ERGMs have the ability to incorporate multiple choice-based variables rep-
resenting endogenous attributes (network-based variables) and exogenous at-
tributes (characteristic-based variables). Therefore, they can account for the
interdependencies arising from the peer effect problem. ERGMs have recently
been applied to a wide range of networks, such as brain networks ([9]), disease
networks ([10]), and a climate change hyperlink network ([11]). In the context
of production networks, most previous works have been limited to very small

3 Although our interest is focused on production networks, these topics have also been
studied in the context of other networks, such as brain networks, WWW networks,
and biological networks.

4 In an interactive influence system, what behaviors should be specified in the estima-
tion model?

5 The presence of a link between two agents could be due to unobservable behaviors.
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networks, such as those considered by [12] (a network of 106 firms in the trans-
portation sector in Italy), [13] (a production network consisting of 75 Italian com-
panies involved in the production of machines for the manufacturing of ceramic
tiles) and [14] (a business network containing 36 Spanish firms). All of these
works demonstrated the effects of network-related attributes (such as transitiv-
ity and mutuality) in explaining partnerships between suppliers and customers.
[15] were the first to study a large-scale production network, namely, the Tokyo
Stock Exchange production network (a Japanese production network consist-
ing of 3,189 listed firms). They identified the roles of various endogenous and
exogenous attributes in the formation of ties between suppliers and customers.

In this paper, as a new contribution to this area, we propose a complemen-
tary study building on previous works on the application of ERGMs to produc-
tion networks. As discussed previously, [6] extracted the hierarchical structure
of communities in the Japanese production network using the Infomap method
introduced by [16]. In this paper, we analyze the Japanese production network
at the community level. Most irreducible communities are found to belong to
the second level of the hierarchy. This level provides a reasonable community
resolution and exhibits a power law decay in the community size distribution.
The 100 largest communities, whose sizes vary between 100 and 2,347, are con-
sidered for the estimation of the emergence mechanisms of their links by means
of an ERGM.

This paper is organized as follows. Section 2 presents the data and the proper-
ties of the hierarchical community structure of the Japanese production network.
Section 3 briefly introduces the ERGM and describes the considered statistical
model. In Section 4, simulations are reported, and the estimation results are dis-
cussed. Finally, the conclusion and research perspectives are presented in Section
5.

2 The hierarchical structure of the Japanese production
network

The Japanese production network data set is commercially available from Tokyo
Shoko Research (TSR), Inc., one of the leading credit research agencies in Japan.
The resulting production network (consisting of 1, 247, 521 firms and 5, 488, 484
links) is an unweighted network representing the flow of goods and services from
suppliers to customers. The data set contains, for each firm, precise information
about its geographic location, its sectorwise classification, its sales figures, its
number of employees and its major bank. Each geographic location is specified
as one of the 47 Japanese prefectures, and the industrial sectors are hierarchi-
cally categorized into 20 divisions, 99 major groups, 529 minor groups and 1,455
industries (Japan Standard Industrial Classification, November 2007, Revision
12). Prior to performing community detection, the data must be treated. Fol-
lowing the exclusion of inactive and failed firms and the elimination of self-loops
and parallel edges, the weakly connected giant component consisting of 1,066,037
firms and 4,974,802 edges is considered as the final production network (see [6]).
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2.1 The community detection method

The map equation method introduced by [16], popularly known as “Infomap”,
is one of the best-performing algorithms ([17]) for detecting communities in a
large-scale network. Operating within the framework of information theory, it
generates a map to describe the dynamics across the links and nodes of the net-
work. The links in the network represent information flows between nodes. The
Infomap method provides an efficient coarse-grained description of the informa-
tion flows in the network and thus reveals the communities in the network by
providing a compressed description of the flows. The algorithm uses a random
walk as a proxy for information flow in the network. With this method, a subset
of nodes in the network in which the random walker spends a relatively long
time can be identified as a well-connected community.

The map equation method described above generates a two-level partition of
the network. This two-level map equation method has a resolution limit prob-
lem; furthermore, it has been extended to a hierarchical map equation method
([18]), which can decompose a network into communities, subcommunities, sub-
subcommunities and so on6.

2.2 The hierarchy of communities

We have employed the hierarchical map equation method to reveal the commu-
nities in the Japanese production network at different levels; the results are given
in Table 1. Most of the irreducible communities are found at the second level,
and we further observe that the community size distribution at this level is best
fitted with a power law decay ([6]). Because the sizes of the communities at this
level also reflect a reasonable partition resolution, we investigate the network
structure at the second level of the hierarchy using an ERGM.

Table 1. The numbers of communities identified at different levels of the Japanese pro-
duction network using the Infomap method. c denotes the total number of communities.
The number of irreducible communities, which are communities that do not contain
any subcommunities, is denoted by cr. nc denotes the number of firms in irreducible
communities.

Level c cr nc

1 209 106 830

2 65, 303 60, 603 998,267

3 18, 271 17, 834 61,748

4 1, 544 1,539 5,168

5 10 10 24

Total 80,092 1,066,037

6 The hierarchical map equation method from http://www.mapequation.org/ is used
in this study to reveal the hierarchical communities in the large-scale Japanese pro-
duction network.
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3 The fixed-density exponential random graph model

An ERGM is a tie-based regression model that explains how links are formed
between nodes. For a network X = [xij ], an ERGM regresses the adjacency
matrix with a set of endogenous attributes za (network statistics) and exoge-
nous attributes ze (node characteristics). The canonical form of the ERGM is as
follows:

PrΘ(X = x) =
1

κ(Θ)
exp

(∑
a

θa · za(x) +
∑
e

θe · ze(x)

)
, (1)

where x is a realization of X, Θ = (θa, θe) is a vector of parameters of endogenous
and exogenous attributes, and κ is a normalizing constant that ensures a proper
distribution. Normalization is performed with respect to all possible network
realizations, as follows:

κ(Θ) ≡
∑
y∈X

exp

(∑
a

θa · za(y) +
∑
e

θe · ze(y)

)
. (2)

It is technically impossible to explicitly determine Eq. 2 due to the large
number of possible network realizations, which increases exponentially with the
number of nodes. For a directed network of n nodes, one would need to determine

all 4(n
2) possible networks to calculate Eq. 2 and the true generation probability

of the network ties. Consequently, the use of Markov chain Monte Carlo (MCMC)
sampling techniques has been introduced in the literature ([19]). Because of the
high level of computational resources required for the Monte Carlo simulation
to estimate the parameters, we have implemented an ERGM estimation method
based on a fixed-density MCMC (FD-MCMC) sampling approach (discussed in
[20]); in the following, this method is abbreviated as FD-ERGM.

3.1 The FD-ERGM algorithm

The idea is to estimate the parameters θa and θe such that the probability
PrΘ(X = x) defined in Eq. 1 generates networks X that are consistent with the
observed network. We wish to solve the moment equation Eθ(z(X))−z(xobs) = 0,
where z(X) represents the statistics of interest for a network X sampled with
the MCMC approach and z(xobs) represents the observed statistics for the real
network.

Our algorithm is based on the stochastic approximation method proposed by
[19], which uses the Robbins-Monro algorithm for the maximum likelihood esti-
mation (MLE) of the ERGM. The algorithm is composed of three phases: initial-
ization, optimization and convergence (details are given in [26]). The algorithm
can be summarized into two major steps that are repeated until convergence is
reached (Eθ(z(X))− z(xobs)→ 0):

1. Use Θ to generate a network X via MCMC sampling.
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2. Update Θ to minimize the moment equation.

In the first step, it would be highly time consuming to approximate all pos-
sible network realizations. In our code, we instead adopt the FD-MCMC sam-
pler discussed by [19, 20]. The FD-MCMC sampler randomly selects two dyads,
namely, one null dyad (xij = 0) and one non-null dyad (xij = 1). Then, with
the Hasting probability, these dyads are simultaneously toggled. Thus, the FD-
MCMC sampler reduces the number of possible networks considered by keeping
the global number of edges constant (L = Lobs).

3.2 Assumptions about the statistical model

In the considered FD-ERGM method, we consider 8 endogenous or network-
dependent attributes and 7 exogenous or economic attributes.

The endogenous attributes Endogenous attributes are social-based attributes
related to the network structure (see [21, 23] for details about network motifs).
The motifs considered in our statistical model are given in Eq. 3. The zr statistic
represents reciprocal links. It is expected that the probability of the emergence
of a tie from supplier i to customer j will increase if j is already a supplier of i.
This has been shown for several economic networks; see, for example, [24, 12, 13].
The Japanese production network is characterized by hubs; see [4]. Thus, ties
are more probable for firms with higher in-degrees and out-degrees, i.e., so-called
popular and active firms, respectively. This phenomenon was described in [13] as
the trustworthiness of firms, i.e., other firms will have more confidence in more
active and popular firms. This structure is modeled by the k-out-star (activity)
and k-in-star (popularity) motifs (see zstars in Eq. 3).

In addition, in a production network, there may be a correlation between a
firm’s activity and its popularity. A supplier with a larger number of customers
(out-degree, or popularity) will require more intermediate goods and thus may
have a larger number of suppliers (in-degree, or activity). Thus, to capture the
popularity-activity correlation, the k-two-path motif is considered in our model
(see zpath in Eq. 3).

Transitivity is a common property of social networks. In a production net-
work, transitivity implies a higher level of trust between firms with a common
partner; see [24]. Accordingly, in the current model, we include four statistics of
transitivity (k-triangles) based on the directionality of the edges: cyclic closure
(AT-C), popularity closure (AT-D), path closure (AT-T) and activity closure
(AT-U). All these statistics follow the ztriangles form given in Eq. 3.
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zr =
∑

i,j:xij=xji=1

xij

zstars =

N−1∑
k=2

(−1)k · Sk
λk−2

zpath = P1 − 2 · P2

λ

N−2∑
k=3

(
−1

λ
)k−1 · Pk

ztriangles = 3 · T1 +

N−3∑
k=1

(−1)k · Tk+1

λk

(3)

In Eq. 3, Sk is the number of stars (either in- or out-stars) of order k, Pk is
the number of two-paths of order k, and Tk is the number of triangles (AT-C,
AT-T, AT-U or AT-D) of order k. The functional forms of these statistics were
discussed in [21] as an alternative to the Markov assumption for an ERGM to
ensure convergence. Economically, the use of these geometric forms decreases the
impact of higher-order motifs on the partnering decisions of firms. With regard to
k-stars (zstars), we suppose that firms cannot have complete information about
the numbers of suppliers and customers of all other firms. Thus, even if one
supplier has 100 clients, a new potential client is mainly influenced by a set of
only a few clients. The same supposition holds for transitivity (k-triangles). For
the k-two-path motif, we suppose that the correlation between the in-degree and
out-degree has a certain saturation. In fact, when a firm establishes a contract
with a new customer, it will not necessarily also look for a new supplier. Instead,
the most probable case is that the firm will base its trade expansion strategy on
its inventory.

The exogenous attributes As discussed previously, the process of tie for-
mation between suppliers and customers is very complex and can depend on
attributes other than the network motifs. The financial situation of the firm, the
prices of the intermediate goods, and the reliability of the potential partner are
some of the multiple economic attributes that can encourage two firms to be-
come partners. Due to data limitations, some assumptions are required to select
the most significant attributes for the Japanese production network.

At the community level, the formation of links between suppliers and cus-
tomers can be stimulated by the homophily of some attributes; for example,
the probability of link emergence between firms from the same community in-
creases if they also have a common major bank. Thus, the sector homophily,
geographic homophily and bank homophily are all considered in our model as
follows: homophily =

∑
i,j xijI(yi = yj), where I(yi = yj) is an indicator func-

tion for the similarity between two attributes yi and yj . For sector homophily,
the industrial level is considered, and for geographic homophily, the prefecture
in which the head office of the firm is located is considered.
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Moreover, firms are expected to choose partners based on wealth and size.
The wealth of a firm is approximated as its total sales, while its size is repre-
sented by its number of employees, which is more stable over time (we note that
large firms may realize poor profits or sales). These statistics are considered in
terms of heterophily (sales heterophily and size heterophily) to see whether firms
of similar wealth or size are more likely to be connected. The heterophily statis-
tics are calculated as

∑
i,j xij |yi − yj |. In addition, the activity and popularity

attributes, introduced as endogenous attributes, can exert complementary sales
sender/receiver effects. These statistics reflect the potential of a firm to gain more
clients (sender effect) or more suppliers (receiver effect) as its sales increase. The
sales sender/receiver effects are expressed as

∑
i,j xijyi and

∑
i,j xijyj , respec-

tively.

4 FD-ERGM simulations and estimated results

Simulations of the FD-ERGM were carried out in parallel for all communities
using the K computer7. For each community i, 100 simulations were performed
to test the robustness and significance of the estimated parameters Θ̂i. Based
on the obtained estimates, for each community i, 100 networks were sampled to
validate our model in terms of the goodness of fit (GoF) ratio proposed by [20].

Only the results for the three largest communities are presented in Table 2
for model validation because of the impossibility of displaying the GoFs for all
100 communities. High GoF values were also achieved for all other communities
with the proposed statistical model.

4.1 Mechanisms of tie formation within the communities of the
Japanese production network

The estimation results are presented in Table 3. The results are heterogeneous
among communities, indicating the existence of different tie-formation mecha-
nisms in the supply chain network of Japan at the community level. Table 3
summarizes these results by means of seven columns presenting the average,
maximum and minimum values and standard deviations of the parameters and
the percentages of nonsignificant, significant positive, and significant negative
effects. We note that the average values shown in column two of Table 3 are
not considered to be estimates for the global production network; they are given
only for illustration. The significance was estimated using two tests: the Wald
test (for which a Wald ratio of ≥ 2 indicates a significant parameter; see [26])
and the t-test (for which a p-value of < 0.01 indicates a significant parameter).
The significance tests were applied independently for each community.

7 The K computer is the first 10-petaflop supercomputer; it was developed by RIKEN
and Fujitsu under a Japanese national project. The system includes 82,944 compute
nodes connected by Tofu high-speed interconnects. For more details, see [25].
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Table 2. GoF analysis: Comparison between real and simulated networks. The net-
works represented here are the three largest communities considered from the second
level of the hierarchical structure of the Japanese production network. The sizes of
communities 1, 2 and 3 are 2,347, 2,249 and 2,173, respectively. The values given in
parentheses represent the GoF ratio calculated as described by [20].

Attributes Community 1 Community 2 Community 3

Endogenous Attributes: Real Sim. Real Sim. Real Sim.

Reciprocity 156.0
−

136.5
(1.89)

89.0
−

81.2
(1.19)

74.0
−

63.4
(1.96)

Popularity (k-in-stars) 2068.0
−

1895.3
(1.89)

2053.0
−

1978.3
(1.88)

1968.6
−

1934.1
(0.61)

Activity (k-out-stars) 359.0
−

343.6
(1.54)

527.0
−

497.3
(1.60)

414.0
−

381.6
(1.63)

k-two-paths 5000.8
−

4708.7
(1.64)

608.3
−

591.9
(0.53)

5773.1
−

5606.3
(1.94)

Cyclic closure (AT-C) 228.2
−

241.1
(-0.64)

89.9
−

85.2
(0.37)

104.1
−

119.6
(-1.11)

Path closure (AT-T) 4772.6
−

4467.5
(1.71)

518.4
−

506.7
(0.42)

5669.0
−

5486.7
(1.97)

Activity closure (AT-U) 4818.3
−

4547.7
(1.69)

473.5
−

487.1
(-0.51)

5584.6
−

5473.8
(1.18)

Popularity closure (AT-D) 600.6
−

737.4
(-1.93)

286.2
−

354.6
(-1.81)

579.1
−

673.7
(-1.17)

Exogenous Attributes: Real Sim. Real Sim. Real Sim.

Sector homophily 600.0
−

651.8
(-1.17)

1, 073.0
−

1119.7
(-1.30)

322.0
−

295.8
(1.19)

Location homophily 849.0
−

787.2
(1.67)

703.0
−

688.7
(0.30)

2218.0
−

2096.7
(1.46)

Bank homophily 60.0
−

53.1
(1.68)

39.0
−

35.0
(1.40)

84.0
−

82.2
(0.41)

Size heterophily 7.76 · 108

−
7.99 · 108

(-0.10)

7.28 · 106

−
8.19 · 106

(-0.26)

4.25 · 107

−
4.69 · 107

(-0.90)

Sales heterophily 2.73 · 1011

−
2.65 · 1011

(1.10)

1.48 · 1011

−
1.43 · 1011

(1.78)

4.41 · 1012

−
4.29 · 1012

(1.46)

Sales receiver effect
7.56 · 109

−
8.65 · 109

(-1.59)

2.00 · 109

−
2.56 · 109

(-1.30)

4.91 · 1010

−
5.30 · 1010

(-0.83)

Sales sender effect
2.74 · 1011

−
2.64 · 1011

(1.37)

1.48 · 1011

−
1.44 · 1011

(1.44)

4.41 · 1012

−
4.33 · 1012

(0.98)

The effects of endogenous attributes Based on Table 3, some endogenous
attributes have the same effect on all communities. In particular, reciprocity
has a significant positive effect on 80% of our sample (in 15%, reciprocity has no
effect on the emergence of new relations between suppliers and customers). Thus,
in 80% of the communities, there is a high chance of the emergence of a link
from a supplier to a customer if the reverse relation exists. A few communities
(5%) show a negative effect of reciprocity on the appearance of new links between
firms. These five communities are characterized by an absence of reciprocal links;
three of them have 2 reciprocal links, one has 0 reciprocal links, and one has 4
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Table 3. A summary of the estimation results for the parameters Θ. The results for
each parameter are given based on the 100 considered communities in the Japanese
production network. Two significance tests are employed, namely, the Wald test and
the t-test. A parameter is considered significant for a Wald ratio of ≥ 2 in the case
of the Wald test and for a p-value of < 0.01 in the case of the t-test. Significance is
rejected for a Wald ratio of ≤ 2 or a p-value of > 0.01.

Attributes ΘMLE Θmax
MLE Θmin

MLE s.d.(ΘMLE) nonsig. positive negative

Endogenous Attributes:
Reciprocity 1.59 3.78 -2.62 1.31 15% 80% 5%
Popularity (k-in-stars) 3.68 8.25 0.90 1.79 8% 92% 0%
Activity (k-out-stars) -1.48 -0.66 -4.32 0.81 14% 0% 86%
k-two-paths -0.01 0.41 -1.00 0.15 60% 28% 12%
Cyclic closure (AT-C) -0.06 0.56 -2.14 0.26 59% 10% 31%
Path closure (AT-T) 0.00 0.31 -1.38 0.24 48% 40% 12%
Activity closure (AT-U) -0.09 0.35 -1.58 0.40 39% 37% 24%
Popularity closure (AT-D) -0.28 0.31 -3.38 0.51 50% 6% 44%

Exogenous Attributes:
Sector homophily 0.19 2.58 -0.43 0.45 41% 42% 17%
Location homophily 0.86 3.68 0.13 0.72 9% 91% 0%
Bank homophily 0.44 0.14 3.12 0.002 15% 80% 5%
Size heterophily 3.04 · 10−4 9.02 · 10−3 -6.15.10−03 1.12 · 10−03 48% 33% 19%
Sales heterophily 3.59 · 10−8 5.31 · 10−7 4.31.10−10 7.26 · 10−08 21% 79% 0%
Sales receiver effect 5.80 · 10−8 1.22 · 10−6 4.73.10−10 1.50 · 10−07 22% 78% 0%
Sales sender effect −1.31 · 10−8 −1.18 · 10−10 -3.37.10−07 3.71 · 10−08 52% 0% 48%

reciprocal links. Thus, the observed negative effect can be interpreted as an
absence of mutual partnerships.

The popularity (k-in-stars) is the attribute with the most significant endoge-
nous effect considered in our sample, with a significant positive effect on the
emergence of new links in 92% of the communities. Thus, popular firms (firms
with high in-degrees) are likely to become even more popular, i.e., suppliers have
higher confidence in popular customers. Similarly, the activity (k-out-stars) has
a significant negative effect in 86% of the communities. This finding indicates
the existence of an upper bound on the number of customers that a supplier can
have. This bound may be related to the production capacity of the supplier in
terms of intermediate goods, i.e., a supplier cannot have an unlimited number
of customers.

On the other hand, k-triangles are only weakly present. In fact, transitive co-
operation is not common in the considered communities of the Japanese produc-
tion network. Popularity closure (AT-D), cyclic closure (AT-C), activity closure
(AT-U) and path closure (AT-T) all show nonsignificant or significant negative
effects in 94%, 90%, 63% and 60% of the communities, respectively. Thus, aside
from a few special cases, transitive cooperation is not a property of the studied



Title Suppressed Due to Excessive Length 11

communities. Production competition between firms may reduce their trust level
and thus their inclination toward business cooperation. Similarly, [4] showed an
absence of significant clustering in the Japanese production network by com-
paring the real clustering to the level of clustering that would be generated by
chance.

The k-two-path statistic is nonsignificant for 60% of the considered commu-
nities. In some communities (28%), there is a positive correlation between in-
degree and out-degree. Accordingly, more popular (active) firms are more likely
to be more active (popular). Thus, we can expect the formation of communi-
ties with hubs that simultaneously have many suppliers and many customers.
In other communities (12%), there is a negative correlation between in-degree
and out-degree. Economically, such a scenario could be explained as a commu-
nity consisting of firms producing raw capital goods (firms at the top of the
upstream channel) and firms producing goods for final consumption (firms at
the bottom of the downstream channel, selling to the household market).

The effects of exogenous attributes Location homophily is the most im-
portant exogenous factor in explaining the emergence of links at the community
level. Table 3 shows that 91% of the considered communities exhibit a significant
positive location homophily. Thus, the factor of distance is very important to
strategic partnership decisions among Japanese firms. Moreover, bank homophily
is the second most important factor. In 80% of the considered communities, the
existence of a common major bank increases the probability that two firms will
be connected. Surprisingly, sector homophily has only a limited influence on the
emergence of links at the community level. In 41% of cases, a common industrial
sector has no significant effect on the existence of partnerships between suppliers
and customers, whereas 42% of the communities show significant sector-based
selection in the formation of partnerships between Japanese firms. However, 17%
of the communities show sector heterophily. This sector heterophily could be re-
lated to two possible scenarios: communities with highly diversified activities
(firms need heterogeneous intermediate goods for production) or communities
with sector homophily saturation (there is an upper bound on the formation of
new links with firms from the same sector).

Although the firm size (number of employees) has a clearly nonsignificant
effect on tie emergence, the sales volume may explain, in some cases, the forma-
tion of connections between suppliers and customers. In 79% of the considered
communities, there is a significant positive sales heterophily, which implies that
firms with lower production activity are more likely to be connected to firms
with higher production activity. The sales receiver effect has a significant posi-
tive presence in 78% of the communities, in line with our finding concerning the
popularity effect (k-in-stars). Thus, firms with higher production activity are
more likely to receive intermediate goods from multiple suppliers. By contrast,
the sales sender effect has a significant negative presence in 48% of the com-
munities, in line with the previously discussed upper bound on the number of
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customers that a supplier can have, as indicated by the results for the activity
statistic (k-out-stars).

4.2 Analysis of several special cases

By focusing in on the three largest communities at the second level of the hier-
archical structure of the Japanese production network, we can confirm that the
reciprocity, popularity, activity, location homophily, bank homophily and sales
statistics are the common attributes that motivate the emergence of partnerships
between suppliers and customers at the community level, as shown in Table 4.

By contrast, the effect of transitivity depends on the properties of the commu-
nity. In Table 4, community 2 shows a significant positive cyclic closure effect,
which reflects an economy based on the exchange of general goods. However,
community 3 shows a significant negative cyclic closure effect, and community
1 displays a nonsignificant effect. Communities 1 and 3 are also characterized
by a significant positive effect of activity closure (AT-U), which means that two
suppliers of the same firm, who might be assumed to be competitors, are more
likely to be partners. The economy in such a community may be regarded as a
cooperative economy. By contrast, community 2 presents a significant negative
estimate of the activity closure effect (-0.17), which implies that the firms are in
competition and that suppliers of the same firm cannot be partners.

Community 3 shows a significant positive sector homophily (0.41), indicating
that firms from the same sector are more likely to be connected. However, in
communities 1 and 3, a significant negative sector homophily is observed. As
seen from Table 2, community 1 has 600 links between firms from the same
sector, community 2 has 1,073 links between firms from the same sector, and
community 3 has 322 links between firms from the same sector. These statistics
represent densities of sector homophily of 10%, 25% and 5%, respectively, in
each community. Thus, we cannot conclude that sector heterophily exists in
communities 1 and 2. However, link saturation may be present, as explained in
the previous section, which would decrease the probability of the emergence of
new links between suppliers and customers from the same industrial sector. By
contrast, in some other communities with a negative sector homophily, we find
a low density of links between firms from the same industrial sector (fewer than
0.5%). In these cases, we can confirm the presence of sector heterophily.

5 Discussion and concluding remarks

This paper has presented a comparative analysis among communities in the
Japanese nationwide production network. The communities show heterogeneous
rules driving the formation of their internal ties. Moreover, new explanations
are given in relation to the considered attributes. It has been shown that the
reciprocity, popularity, activity, location homophily, bank homophily and sales
statistics are common forces driving the formation of internal links in most of
the studied communities. By contrast, transitivity is rejected as a motivation for
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Table 4. Estimation results for the three largest communities considered from the
second level of the hierarchical structure of the Japanese production network. The sizes
of communities 1, 2 and 3 are 2,347, 2,249 and 2,173, respectively. Two significance
tests are employed, namely, the Wald test and the t-test. A parameter is considered
significant for a Wald ratio of ≥ 2 in the case of the Wald test and for a p-value of
< 0.01 in the case of the t-test. Significance is rejected for a Wald ratio of ≤ 2 or a
p-value of > 0.01. The entry in the significance column (sig.) is ′+′ if the parameter is
significant and ′−′ otherwise.

Attributes Community 1 Community 2 Community 3

Endogenous Attributes: ΘMLE sig. ΘMLE sig. ΘMLE sig.
Reciprocity 2.50 + 3.52 + 3.31 +
Popularity (k-in-stars) 8.25 + 6.23 + 7.80 +
Activity (k-out-stars) -1.71 + -1.69 + -1.45 +
k-two-paths 0.07 + 0.08 − 0.07 +
Cyclic closure (AT-C) -0.06 − 0.39 + -0.19 +
Path closure (AT-T) 0.07 + 0.07 − 0.08 +
Activity closure (AT-U) 0.05 + -0.17 + 0.05 +
Popularity closure (AT-D) -0.55 + -0.87 + -0.47 +

Exogenous Attributes: ΘMLE sig. ΘMLE sig. ΘMLE sig.
Sector homophily -0.42 + -0.33 + 0.41 +
Location homophily 0.65 + 1.27 + 0.37 +
Bank homophily 1.88 + 3.26 + 1.92 +
Size heterophily 1.7310−09 − −4.1810−08 − −1.5610−07 +
Sales heterophily 2.58 10−08 + 5.2710−08 + 1.5610−09 +
Sales receiver effect 2.81 10−08 + 5.6110−08 + 1.7610−09 +
Sales sender effect -6.23 10−09 + −1.8610−08 + −5.7610−10 +

connections between suppliers and customers in most communities. Accordingly,
the phenomena of trustworthiness and reliability related to common partners
that have been found in other studies of production networks, such as those of
[24, 12, 13, 15], cannot be confirmed at the community level. Moreover, it was
expected that sector homophily would be one of the main driving forces of tie
formation at the community level, as shown for the TSE production network by
[15]. However, through ERGM estimation at the community level, it has been
shown that sector homophily is not always a significant factor for tie formation
in communities of the Japanese production network.

Although this work contributes to research on production networks, some
limitations must be discussed to pave the way for future work. First of all,
the results may depend on the community detection technique applied, i.e., the
community structure may change depending on the applied algorithm, which
may affect the results of ERGM estimation. However, our choice of the Infomap
algorithm was based on previous discussions such as those presented by [16], who
showed that Infomap is suitable for networks with flows between nodes (flows
of goods and services, in the case of production networks), and by [17], who
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considered Infomap to be one of the best-performing algorithms on large-scale
networks.

Another limitation of this work concerns the neglect of intercommunity links.
Indeed, the entire production network of Japan contains more than one million
firms. An ERGM cannot be used for the estimation of such an enormous network
due to major limitations of computational feasibility. In addition, a network of
such size can result in serious problems of degeneracy. [27] used the snowball
sampling technique to estimate a large-scale network with an ERGM. This tech-
nique consists of sampling multiple subnetworks of moderate size, estimating
their ERGMs and then performing estimation for the whole network via meta-
analysis. [27] successfully applied this algorithm to a random network of 40,000
nodes. However, this technique is not suitable for the estimation of a real network
such as the Japanese nationwide production network because of the scale-free
topology of this network (see [4]) and the multiple hubs it contains, which would
cause the sampling results to be biased. Accordingly, focusing on the commu-
nity level is an efficient way to begin to investigate the driving forces behind
the formation of supplier-customer relationships. Future research will follow the
recent work of [28], who are working on speeding up MCMC sampling. In their
recent work, these authors used an ERGM to perform estimation for a large-scale
network of 104,103 nodes.
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