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Abstract. This paper reports a framework of analysing of spreading
herbivore of individual-based system with time evolution network rA ptq.
By employing a sign function θ1 pxq, θ1 p0q “ 0, θ1 pxq “ 1 x P N, the
dynamic equation of spreading is in a matrix multiplication expression.
Based on that, a method of combining temporal network is reported. The
risk of been-spread and the ability-to-spread can be illustrated by the
principal eigenpair of temporal-joined matrix in a system. The principal
eigenpair of post-joined matrix can estimate the step number to the
furtherest agent Si in a non-time evolution network system rA ptq “ rA as
well.
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1 Introduction

Various applications of network crossing social and natural disciplinaries [1]. As
a mathematical abstraction method, network describes the interactions among
elements inside of system as links among nodes. The non-direction and static
network gets the highest abstraction level and gives us uncountable results of
explaining the dynamic properties of system. Temporal network [2] reduced the
level of abstraction to contain essential dynamic information of system. Spec-
tral method and eigensystem decomposition of network adjacency matrix, or of
Laplacian matrix, are fortherword abstraction method, which reveals the topol-
ogy properties of network [3] and dynamic properties of system [3, 4]. But we do
not have a good framework to combine spectral method and temporal network
nowadays. Spreading on network is a scientific problem that wants such frame
work most. A query on the Thompson Web of Science database shows the impor-
tance of spreading in complex network, more 1500 papers for the year 2017. But
the situation of eigensystem explanation for spreading problem do not go well.
Valdano et al. reviewed past works and left a negative comment for applying
eigenvector centralities method from static contacting network in year 2015 [5],
they used statistics of contacting data.



2 S.-C. Wang and N. Ito

This paper is organized as following. The following section shows the dynamic
equation of spreading. Derivation of the dynamic equation is arranged in the
appendix. The next following section shows the numerical result of non-time
evolution network. The spreading speed of periodical repeating temporal network
is after that. Future work is after the dissuasion section.

2 Derivation of the formula

For an individual-based simulation, one single network site indicates one agent
only. We use binary value

´

ÝÑ
H ptq

¯

i
for describing state-of-been-spread for i-th

agent at time t. While the value of
´

ÝÑ
H ptq

¯

i
is zero indicate the situation that

i-th agent is free form been-spread state, and value one for been-spread state,
respectively. The only condition of turning to be been-spread state of each agent
is the existence of been-spread neighbour. Since a agent is in been-spread state,
this been-spread agent will be remain in this state forever. We formulate this
spreading dynamic of system with N agents on time a evoluting network:

ÝÑ
H ptq “ θ1

¨

˚

˝

¨

˚

˝

ð
t´1
ź

t1“0

´

rI ` rA
`

t1
˘

¯

˛

‹

‚

ÝÑ
H p0q

˛

‹

‚

(1)

rA ptq is an adjacency matrix representation for temporal network at time t,
rA ptqi,j “ 1 means that i-th and j-th agent is connected with a unidirectional
link at time t, the value zero rA ptqi,j “ 0 means not linked, respectively. rI

is a N ˆ N identity matrix. The symbol
ð
ś

is left-matrix-product notation,
ð
m
ś

l“1

ĂAl “ ĄAm . . . ĂA2
ĂA1. Where function θ1 pxq is a simplified denoting form unit

step function, θ1 px ` 1q “ θ pxq. The appendix shows the properties of θ1 pxq.
The derivation of Eqn (1) is shown in the appendix with these θ1 pxq’s properties.

3 Non-evolution matrix

The first step to revel the meaning of eigensystem is choosing the most simple
case – non-evolution network and single spreading source, rA ptq “ rA,

´

ÝÑ
H p0q

¯

j
“

δi,j . The i-th agent is the unique spreading source. In the non-evolution net-

work case, the Eqn (1) can be simplified as ÝÑ
H ptq “ θ1

ˆ

´

rI ` rA
¯t ÝÑ

H p0q

˙

,

with employing Eqn (13). The been-spread state of j-th agent at time t will

be θ1

˜

ˆ

´

rI ` rA
¯t
˙

ij

¸

. This condition is the 100% been-spread starting from
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i-th agent as a unique spreading origin:
ˆ

´

rI ` rA
¯t
˙

ij

ě 1, @j. (2)

Eigenmode decomposition is more easy comprehend for this matrix multiplica-
tion,

´

rI ` rA
¯t

ij
“
ř

k

´

pλk ` 1q
t
wi,kwj,k

¯

. The k-th eigenpair of matrix rA is λk

and ÝÑ
W k is, such eigepairs satisfy the equation rA

ÝÑ
W k “ λk

ÝÑ
W k. The i-th agent’s

eigenvector component in k-eigenvector is wi,k, wi,k “

´

ÝÑ
W 1

¯

k
The eigenpair in-

dexes k are arranged as a descending order: λ1 ě λ2 ě . . . ě λN . While k “ 1, λ1

and wi,1 are called the principal eigenpair. The three similar matrices,
´

rI ` rA
¯t

,
rI ` rA and rA shares the same eigenvector set. While condition

ppλ1 ` 1q { pλ2 ` 1qq
t

" 1, (3)

the principal eigenpair is suitable for estimate lower bound of Si:

Elower pSiq “ ´
log

`

wi,1wjmin,1

˘

log pλ1 ` 1q
. (4)

Spanning tree If this non-time evolution network is spanning tree, the first
agent, i “ 1, is the hub of this spanning tree, other agents link to the hub and
there was no other links in this network. The off-diagonal elements of adjacency
matrix is rAij “ rAij “ 1 if i “ 1. In this network, S1 “ 1 for i “ 1, and Si “ 2 for
others. For understanding the asymptotic behaviour when system size goes to
large N Ñ 8, we denote a symbol 1{α2 “ N´1. The process of getting principal
eigenpair of rA, λ1 and ÝÑ

W 1, is following: to solve the eigenvector equation rA
ÝÑ
W 1 “

λ1
ÝÑ
W 1 with (a) positive eigenvector assumption wi,1 “

´

ÝÑ
W 1

¯

i
ą 0; (B) network

symmetric wj,1 “ wl,1 @j, l ą 2; (C) eigenvector normalization
ř

i w
2
i,1 “ 1. The

principal eigenpair are λ1 “ 1{α,

wi,1 “

#

1?
α4`1

if i “ 1
α?

α4`1
else

. (5)

We can calculate the Elower pSiq of each agent from Eqn(4):

Elower pSiq “

$

’

’

&

’

’

%

´
log

´

α
α4`1

¯

logp 1
α `1q

« 1 ` α
logpαq

` O
`

α2
˘

if i “ 1

´
2 log

ˆ

α?
α4`1

˙

logp 1
α `1q

« 2 ` 2α
logpαq

` O
`

α2
˘

else
. (6)

Such Taylor expansion shows the asymptotic behaviour when N Ñ 8 as α Ñ 0.
The Figure (1) shows the numerical result of it.
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Fig. 1. Estimating step number to the end of each agent of spanning tree case. A
one-level spanning tree is that hub agent, with the index i “ 1, link all other agent
i “ 2 „ N . In this network, S1 “ 1 for i “ 1, and Si “ 2 for others. Eqn(4) is estimation
formula that used. This numerical result show a asymptotic behaviour when system
size goes to large The analytical form shows in Eqn(6).

Loop and it with and without an extra link We will show that our esti-
mation formula remains the symmetric properties of the original network from
comparing these two network. It is a N “ 16 one dimensional loop, the de-
gree (neighbours) of each agent is two. Such loop network contains symmet-
ric properties and also can be found in the principal eigenvector components:
wi,1 “ 1{

?
N . The step number to coverage all the network should be half size

of network, Si “ N{2 “ 8. This result can be visualized as non zero matrix
element figure of matrix

´

rI ` rA
¯t

in Fig (3). The value of estimation of Si of
each agent from principal eigenpair in Eqn (4) is the same :

Elower pSiq “
logN

log 3
« 2.52372 (7)

Where the principal eigenvalue is equal to average degree of network, λ1 “ 2.
There no asymptotic behaviour when system size goes to infinity here, limNÑ8 Elower pSiq ‰

Si, because the limNÑ8 λ1{λ2 “ limNÑ8 1{ pcos p2π{Nqq “ 1. That do not fit
the condition of Elower pSiq in Eqn (3). Such asymptotic eigenvalue degenercy
will be break when we add a radius link. The radius link links first agent and
N{2 ` 1-th agent. The spectral properties can be calculate as a perturbation
problem when system size goes to large. Form the fist step of perturbation cal-
culation, the value of λ1, w1,1 and w1,N{2`1 are larger then them in the simple
loop, then the estimation values of Si, S1 and SN{2`1 go to smaller. The calcu-
lation of eigensystem of this small system do no need perturbation method. The
estimation value of Si from principal eigenpair of this system is shown in Fig(3).

The Si have three kind of sysmetric properties, our estimation also shows the
same symmetric properties

S1 “ Sn{2`1 (8)
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#

S1`l “ Sn´1´l l “ 1, 2, . . . , N{2

Sn{2`1`l “ Sn{2`1`n´1 l “ 0, 1 . . . , N{2
. (9)

Combined the three symmetric properties, the system of N will partition as four
group, within the edge node of group, the Sis have N{4`1 values. Therefore, the
agents in the same set share the same value of Si : {1,9}, {2,16,10,8} , {3,15,11,7}
, {4,14,12,6}, {5,13}. The results of Fig (3) states that :Si “ 3 ` i i “ 1 „ 5,
we can understand them from the following easy examples. In this network, the
distance to the farest agent of 5-th and of 13 th agent is the same as them in the
loop network without radius link A1,N{2`l. The value of Si for 5-th and of 13 th
agent remains the same S5 “ S13 “ 8. For the 4-th agent, the distance to the
farest agent ,12-th, get one step smaller by shifting to the route with the radius
link, the route t4 Ñ 3 Ñ 2 Ñ 1 Ñ 16 Ñ 15 Ñ 14 Ñ 13 Ñ 12u to the route
t4 Ñ 3 Ñ 2 Ñ 1 Ñ 9 Ñ 10 Ñ 11 Ñ 12u. These symmetric properties can also
be found in our estimator because they are in the principal eigenvector, that
can be revel by calculating higher order perturbations. These correspondence
of symmetric is shown in Fig (3) as five tx, yu points, otherwise it will shown
more than five points. Comparing to the the relation of Si and its lower bound
estimator Elower pSiq, our estimator have the network symmetric properties and
the monotonic relation to Si.

Fig. 2. Matrix multiplication of adjacency matrix. Using this multiplication matrix
post mapped by the function θ1 pxq, shown as black and white, the step number to the
furthest agent can be got. In the left panel as a network without radius link, all columns
or rows turn to black θ1pp rA` rIqtqij “ 1 while t “ 8. Before that, at least on element in
row is white. White matrix element θ1pp rA ` rIqtqij “ 0 means that j-th agent can not
be accessed by i-th agent. Therefore, Si “ 8 for all agent in the loop network without
radius link. There are two white matrix element in the loop network with a radius link
at t “ 7. The two matrix elements are θ1pp rA` rIq7q5,13 “ θ1pp rA` rIq7q13,5 “ 0. It makes
thatSi “ 8 for i “ 13 and 5. Other agents’ Si is shown in section 3. Pre mapped matrix
by the function θ1pxq, shown as gray level, do not show Si information clearly.
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Fig. 3. Estimation value of Si for the loop network with a radius link. The agent
eigenvector component homogeneity in principal eigenpair among simple loop system
is been break down by adding a radius link. But they remains the some systematic
properties that Si have. That the reason that why the estimation value of Si in the
system of N “ 16 in this figure forms 5 points only. The value of Si come from Fig (3).
The estimation value of Si come from Eqn (4). We discuss this figure in Section 3.
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4 Temporal evolution network

For a system that the networks within rA ptq repeat each τ step, rA ptq= rA pt ` τq,
the time evolution of been-spread state ÝÑ

H ptq in Eqn (1) can be denoted by a rP

matrix: ÝÑ
H ptq “ θ1

ˆ

´

rP
¯t{τ ÝÑ

H p0q

˙

, where

rP “ θ1

¨

˚

˝

¨

˚

˝

ð
τ´1
ź

t1“0

´

rI ` rA
`

t1
˘

¯

˛

‹

‚

.

˛

‹

‚

(10)

The following will show the rP and its principal eigenair for two artificial
case,N “ 3 and N “ 60, respectively. The results show that principal eigenair
of rP carries the dynamic information during the period τ .

N “ 3, τ “ 2 case Each time step contains one single link of the route from
first agent to the third agent via the second agent. The first step link the first
and the second agent:

´

rA p0q

¯

1,2
“

´

rA p0q

¯

2,1
“ 1, and

´

rA p0q

¯

i,j
“ 0 for else

ti, ju pair. The second step link the second and the third agent:
´

rA p1q

¯

2,3
“

´

rA p1q

¯

3,2
“ 1, and

´

rA p1q

¯

i,j
“ 0 for else ti, ju pair. The matrix expression of

network rA pt1q is shown in the process of getting matrix rP

rP “ θ1

´´

rA p1q ` rI
¯´

rA p0q ` rI
¯¯

“ θ1

¨

˝

¨

˝

1 0 0
0 1 1
0 1 1

˛

‚

¨

˝

1 1 0
1 1 0
0 0 1

˛

‚

˛

‚ (11)

Ñ rP “

¨

˝

1 1 0
1 1 1
1 1 1

˛

‚ (12)

The three eigenvalues of matrix rP in descending order are
␣

1
2

`

3 `
?
5
˘

, 1
2

`

3 ´
?
5
˘

, 0
(

.
Their corresponding eigenvectors will be t

␣

1
2

`?
5 ´ 1

˘

, 1, 1
(

,
␣

1
2

`

´1 ´
?
5
˘

, 1, 1
(

, t´1, 1, 0uu,
and equal to tt0.618034, 1., 1.u, t´1.61803, 1., 1.u, t´1., 1., 0uu numerically. Com-
paring to the value of w1,1, the larger eigenvector component in principal eigen-
pair of second and of third agent indicate they have higher risk of been-spread.
This result can also tell from the rA pt1q: the second agent and the third agent
receives the spreading from other two agent, but the first agent can not receives
the spreading from the third agent. It is fair that there are no degree of data
compression during the process to get matrix rP from rA pt1q, six binary number
pre and post the process. It is notable that a meaning of matrix elements of
matrix rP ’s transpose matrix rPT is the possible-agent-spreading-from. Larger
values of rPT’s principal eigenvector component shows more ability to spread
things to other agent. That can be shown by this ration value in this system
w1,1{w3,1 “ w2,1{w3,1 “ 1.61.
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N “ 60, τ “ 5 case. Permutation order of network in time will not change
the average value in time, but it changes the result of spreading. This part
shows a very simple example that the time order of network appearing changes
the spreading importance of each agent. There are only two networks in this
system, ĄA#1 and ĄA#2, and only one network appears in each time step. The two
network and their relation can be understood as following procedure. First, loop
the N “ 60 agents as a ring. Partition this ring loop into Ngroup “ 10 groups
by taking Ngroup inter-group links. These Ngroup inter-group links form net-
work #2, ĄA#2. The other

`

N ´ Ngroup
˘

intra-group links form network #1,
ĄA#1. That results ĄA#1 ` ĄA#2 “

Č

Aring. The edge of group is the i-th agent
with this condition: mod

`

i,N{Ngroup
˘

“ 1, or mod
`

i,N{Ngroup
˘

“ 0.
For example, first, 6-th and 60-th agent are the edge agent. We discuss two kind
of permutation order in a τ “ 5 window, ĄA#2 first and ĄA#2 last. In first kind
permutation order, ĄA#2 first, network ĄA#2 appears in the first step rA p0q “ ĄA#2,
and ĂA1 appears in the following next four steps, rA ptq “ ĄA#1 t “ 1 „ 4. This
permutation order repeats every τ “ 5 steps: rA ptq “ rA pt ´ τq. The beginning
position of permutation order of network #2, rA p0q “ ĄA#2, helps the edge agents
spread to his neighbourhood group. Other non-edge can spread to his neighbour-
hood group since next τ repeating. The stronger spread ability to other agent
of edge agents has been confirmed by the magnitude ratio principal eigenvector
components shown in Fig (4) as blue points. In the second permutation order, the
inter-group link was placed in the last rA p4q “ ĄA#2, the ability of spreading of
edge agents is suppressed. This result can also be understood from a perspective
of principal eigenvector components in Fig (4) as orange points. In summary,
the principal eigenvector components of matrix rP or rPT contain the informa-
tion we need, the ability of spreading and the risk of been spread, respectively.
This eigenvector representation is highly compressed. Post the normalization of
eigenvector components, „ w2

i,1 “ 1, we use N ´ 1 numbers to represent the
information among τN{2 binary numbers.

5 Conclusion

Employing the sign function θ1 pxq, the dynamic equation of spreading phenom-
ena in a matrix multiplication expression in Eqn (1). That dynamic equation
also states the importance of principal eigenpair. In a non-time evolution net-
work system rA ptq “ rA, principal eigenpair can estimate the step number to the
furtherest agent Si. In a time evolution network system rA ptq, the risk of been
spread and the ability to spread is illustrated by the principal eigenvector of
matrix rP and of its transposed one rPT, respectively.

We find the asymptotic degeneracy for principal eigenvalues in Section 2. How
the other eigenpair and degeneracy impact spreaing phenomena are arranged in
our recent studies. We also will apply this method for studying the various
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Fig. 4. Matrix rPT’s principal eigenvector component. The related magnitude of edge
agents’ principal eigenvector components to non-edge one rises while pushing the ap-
pearance time of inter-group-edge-network ĆA#2 in τ periodically repeat time window
from the last position (orange color) to the first place (blue color). The first agent i “ 1
is a typical example for edge agent, and i “ 2 is non-edge one. That means that the
related spreading ability increase for group-edge agents. The matrix rPT is evaluating
from the Eqn (10), notation T for matrix transpose.

epidemic model besides traditional compartmental epidemic agent models [6]
and for super-spreading phenomena and target vaccine problem.
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7 Appendex

7.1 Properties of function θ1pxq

Using the unit step function θ pdq to define a binary value function θ1 pdq

θ1 pdq “ θ pd ´ 1q “

"

1 d ě 1
0 else

The following shows prosperities of function θ1 pdq for derivation of equations
of spreading on network. In this system, the existence of link rAij and spreading
state of time

´

ÝÑ
H ptq

¯

i
are binary value. All the operations in this study are

multiplication and addition without any subtraction. All values in this study
should be non-negative integers. We shows prosperities of function θ1 pdq for
non-negative integers. The symbols d and e are arbitrary non-negative integers
, and ÝÑ

D , ÝÑ
E are vector or matrix with arbitrary non-negative integers.

"

θ pd ˆ e ´ 1q “ θ pd ´ 1q ˆ θ pe ´ 1q

θ pd ` e ´ 1q “ θ pθ pd ´ 1q ` θ pe ´ 1q ´ 1q

*

Ñ

"

θ1 pdeq “ θ1 pdq θ1 peq

θ1 pd ` eq “ θ1 pθ1 pdq ` θ1 peqq

*

Ñ θ1 pd1e1 ` d2e2q “ θ1 pθ1 pd1e1q ` θ1 pd2e2qq “ θ1 pθ1 pd1q θ1 pe1q ` θ1 pd2q θ1 pe2qq

We generalize the scalar function θ1 to be a matrix function
´

θ1

´

ÝÑ
D
¯¯

i,m
“ θ1

´

ÝÑ
D i,m

¯

Ñ

$

&

%

θ1

´

ÝÑ
D

T ÝÑ
E
¯

“ θ1

´

θ1

´

ÝÑ
D

T
¯

θ1

´

ÝÑ
E
¯¯

θ1

´

ÝÑ
D `

ÝÑ
E
¯

“ θ1

´

θ1

´

ÝÑ
D
¯

` θ1

´

ÝÑ
E
¯¯

,

.

-

The value of zero and one are the twos fix points of function θ1 pxq : θ1 p0q “ 0,
θ1 p1q “ 1. For a arbitrary binary matrix or vector ÝÑ

B , which is with element
zero or one, ÝÑ

B will be the same post been acted by θ1:

θ1

´

ÝÑ
B
¯

“
ÝÑ
B. (13)

And function value of θ1 pdq is binary, therefore for arbitrary matrix or vector

θ1

´

θ1

´

ÝÑ
D
¯¯

“ θ1

´

ÝÑ
D
¯

.

.
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7.2 Detail derivation of Eqn 1
ÝÑ
H pt ` 1q “

ÝÑ
H ptq ` θ1

´

rA ptq
ÝÑ
H ptq

¯

Ñ
ÝÑ
H pt ` 1q “ θ1

´

ÝÑ
H ptq

¯

` θ1

´

rA ptq
ÝÑ
H ptq

¯

Ñ
ÝÑ
H pt ` 1q “ θ1

´

ÝÑ
H ptq ` rA ptq

ÝÑ
H ptq

¯

“ θ1

´´

rI ` rA ptq
¯

ÝÑ
H ptq

¯

“ θ1

´

θ1

´

rI ` rA ptq
¯

ÝÑ
H ptq

¯

Ñ
ÝÑ
H pt ` 2q “ θ1

´

θ1

´

rI ` rA pt ´ 1q

¯

θ1

´

rI ` rA ptq
¯

ÝÑ
H ptq

¯

Ñ
ÝÑ
H ptq “ θ1

¨

˚

˝

¨

˚

˝

ð
t´1
ź

t1“0

θ1

´

rI ` rA
`

t1
˘

¯

˛

‹

‚

ÝÑ
H p0q

˛

‹

‚

Ñ
ÝÑ
H ptq “ θ1

¨

˚

˝

θ1

¨

˚

˝

ð
t´1
ź

t1“0

´

rI ` rA
`

t1
˘

¯

˛

‹

‚

ÝÑ
H p0q

˛

‹

‚

Ñ
ÝÑ
H ptq “ θ1

¨

˚

˝

¨

˚

˝

ð
t´1
ź

t1“0

´

rI ` rA
`

t1
˘

¯

˛

‹

‚

ÝÑ
H p0q

˛

‹

‚


