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Abstract. Macroscopic fundamental diagrams (MFDs) on simple street
networks are studied analytically and numerically. We consider nonlinear
circuit model that consists of road elements with piecewise linear funda-
mental diagram. We find that MFDs of the model are discontinuous and
sawtooth-like. Meanwhile, simulations of optimal velocity model on the
same street networks yield continuous MFDs, that are observed in real
urban traffic.
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1 Introduction

Traffic flow has attracted the interest of statistical physicists in these decades
[1, 2]. Free-way traffic, or one-dimensional traffic flow, has been mainly studied
in the field [1–4]. Meanwhile, there are some studies about urban traffic; one of
the most famous models is the so-called Biham-Middleton-Levine model [2, 5].
This model is a extension of the Rule 184 cellular automaton to two-dimensional
systems, and it is found that there are three phases of traffic, that is, free-flowing,
jammed, and intermediate phases. However, these models are too simplified to
compare observations with actual urban traffic.

Recently, the so-called macroscopic fundamental diagram (MFD) draws great
attention in studies of urban traffic [6]. MFD is a reproducible unimodal relation
between vehicle density and vehicle flow rate averaged over a total urban traffic
network. It is very interesting because it might enable rough predictions of large-
scale urban traffic. Although some observations [6] and simulations [6, 7] argued
the existence of MFD, a mechanism of obtaining MFD is not well understood.

For this purpose, we study two models of urban traffic in simple street net-
works. In Sec. 2, we discuss MFDs in the case of the nonlinear circuit model that
we proposed recently [8]. Moreover, we discuss simulation results of the so-called
optimal velocity model in Sec. 3. Finally, we summarize our works in Sec. 4.
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Fig. 1. Schematic picture of street networks that considered in this work. Each directed
edge means street, and a vertex is an intersection connecting all streets. The network
shown in this figure has four streets (N = 4).

2 Nonlinear Circuit Model

In this section, we consider the nonlinear circuit model to study MFDs. This
model is recently proposed by some of the authors [8].

2.1 Model

As a model of urban traffic, we consider strongly connected directed graphs
with 1 vertex and N edges as shown in Fig. 1. It is interpreted that a vertex
and edges i = 1, . . . , N are an intersection and streets with the same length,
respectively. By ignoring spatial structures of vehicle groups, traffic on each
street i is characterized only by two scalar quantities, that is, vehicle density
0 ≤ ρi ≤ 1 and flow rate qi ≡ q(ρi), 0 ≤ qi ≤ 1. Here, q(ρ) is a fundamental
diagram (FD) defined on every street i;

q(ρ) =

{
vρ if ρ < ρp ≡ 1/v,

w(1− ρ) otherwise
(1)

as shown in Fig. 2, where v > 0 is maximal speed for each street, and w satisfies
w = (1−ρp)

−1 = (1−1/v)−1. A street with ρ < ρp and one with ρ > ρp are called
free and jammed, respectively. Moreover, a street with ρ = 1 is especially called
completely jammed. Note that length and time in this work are dimensionless
using maximal values of vehicle density and flow rate on each street.

Assuming equal distribution of vehicle density to outgoing streets at the
intersection, dynamical equations of vehicle density are given by

dρi
dt

=


1

N − n

∑N
j=1 q(ρj)− q(ρi) if ρi < 1,

0 otherwise,
(2)

where n is the number of completely jammed streets. Here the first term and
second one in the r.h.s. of Eq. (2) represent incoming flow from the intersection to
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Fig. 2. Schematic picture of fundamental diagram on each street. Now we set ρp = 0.3
as a example. See text (especially Eq. (1)) for details.

a street i and outgoing flow from the intersection of a street i, respectively. Note
that if there are completely jammed streets, vehicles that are not in completely
jammed streets are assumed not to enter completely jammed streets. Therefore
we set the coefficient of the first term in r.h.s of Eq. (2) as above.

2.2 Previous studies

There are previous studies related to our model shown in Sec. 2.1.
Daganzo and his coworkers studied the nonlinear circuit model with N = 2

[9]. Instead of Eq. (2), they discuss the case that the dynamical equation is given
by

dρi
dt

=


1

2

∑2
j=1 q(ρj)− q(ρi) if ρ1 < 1 and ρ2 < 1,

0 otherwise.
(3)

Considering the linear stability around ρ̇i = 0 or q1 = q2 = const., they found
the system with ρ1 < ρp and ρ2 > ρp is stable for ρp < ρ̄(= (ρ1 + ρ2)/2) < 1/2.
Therefore MFD q̄D(ρ̄) is continuous and given by

q̄D(ρ̄) =


vρ̄ if ρ̄ < ρp =

1

v
,

2v

2− v

(
ρ̄− 1

2

)
if

1

v
< ρ̄ <

1

2
,

0 otherwise.

(4)

Meanwhile, Ezaki and his coworkers extended the model to arbitrary strongly
connected directed graphs [10, 11]. Note that FD q(ρ) in their model is parabola-
like and symmetric, that is, ρp = 1/2. Using the linear stability analysis around
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ρi = const., they found the system with ρi > 1/2 is linearly unstable, and MFD
q̄E(ρ̄) is discontinuous at ρ̄(=

∑
i ρi/N) = 1/2;

q̄E(ρ̄) =

q(ρ̄) if ρ̄ < ρp =
1

2
,

q(1) otherwise.
(5)

Why they conclude different MFDs? Actually both of the works have some
problems. In the case of Daganzo’s study [9], the system size is too small. Mean-
while, in the case of Ezaki’s study [10], symmetric FD would cause problems. If
we consider Daganzo’s model with symmetric FD, MFD becomes discontinuous
because Eq. (4) becomes

q̄D(ρ̄) =

vρ̄ if ρ̄ < ρp =
1

2
,

0 otherwise.
(6)

Moreover, their fixed point ρi = const. is also problematic because this assump-
tion dismisses a state with ρ1 < ρp and ρp < ρ2 < 1/2, which exists in Daganzo’s
results.

As described above, some of the authors proposed this model recently [8].
In that study, they solved the model numericaly in the case of grid street net-
works, and they discussed discontinuous MFD. In this study we consider simpler
network. It enables analytical study for the nonlinear circuit models.

2.3 Linear stability analysis

Assume n streets are completely jammed ρi = 1 andm streets are not completely
but still jammed ρp < ρi < 1. Without loss of generality, we order indices such
that first [N − (n + m)] streets are free, next m streets are jammed, and the
other n streets are completely jammed. If we write ρi(t) = ρ∗i + ϵi(t), where ρ∗i
is a time-independent fixed point (ρ̇∗i = 0), that is,

q(ρ∗i ) =

{
q∗ if 1 ≤ i ≤ N − n,

0 otherwise,
(7)

Eq. (2) can be linearized around ρi = ρ∗i such as

dϵ

dt
=

v

Ñ



−N̂ 1 · · · 1 −ω −ω · · · −ω

1 −N̂ · · · 1 −ω −ω · · · −ω
...

...
. . .

...
...

...
...

1 1 · · · −N̂ −ω −ω · · · −ω

1 1 · · · 1 N̂ω −ω · · · −ω

1 1 · · · 1 −ω N̂ω · · · −ω
...

...
...

...
...

. . .
...

1 1 · · · 1 −ω −ω · · · N̂ω


ϵ

=
v

Ñ
Aϵ, (8)
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where Ñ = N−n, N̂ = Ñ−1, ω = w/v = (v−1)−1, and ϵ = t(ϵ1, . . . , ϵÑ ). Note

that the first Ñ −m columns and the other m columns correspond to free and
jammed streets, respectively. We can discuss linear stability of the fixed point
ρi(t) = ρ∗i if we consider sign of the largest eigenvalue of a matrix A.

If m = 0, the characteristic polynomial of A is

∣∣∣∣∣∣∣∣∣
−N̂ − λ 1 · · · 1

1 −N̂ − λ · · · 1
...

...
. . .

...

1 1 · · · −N̂ − λ

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

α −α
α −α

. . .
. . .

α −α
1 1 · · · 1 α+ 1

∣∣∣∣∣∣∣∣∣∣∣
= (Ñ − 1)αÑ−1 + (α+ 1)αÑ−1

= −λαÑ−1

= 0, (9)

where α = −Ñ − λ. Therefore, eigenvalues satisfy

λ = 0,−Ñ , (10)

which means the fixed point ρi(t) = ρ∗i is linearly stable.
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If m ≥ 1, the characteristic polynomial of A is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−N̂ − λ 1 · · · 1 −ω −ω · · · −ω

1 −N̂ − λ · · · 1 −ω −ω · · · −ω
...

...
. . .

...
...

...
...

1 1 · · · −N̂ − λ −ω −ω · · · −ω

1 1 · · · 1 N̂ω − λ −ω · · · −ω

1 1 · · · 1 −ω N̂ω − λ · · · −ω
...

...
...

...
...

. . .
...

1 1 · · · 1 −ω −ω · · · N̂ω − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α −α
α −α

. . .
. . .

α −α
α −β

β −β
β −β

. . .
. . .

β −β
1 1 1 · · · 1 −ω −ω · · · −ω β − ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (Ñ −m)αÑ−m−1βm + (m− 1)(−ω)αÑ−mβm−1

+ (β − ω)αÑ−mβm−1

= −αÑ−m−1βm−1[(Ñ −m)β − (m− 1)ωα+ (β − ω)α]

= 0, (11)

where α = −Ñ − λ and β = Ñω − λ. In the case of m ≥ 2, some of eigenvalues
satisfy λ = (N − n)ω > 0, that is, the fixed point ρi(t) = ρ∗i is always linearly
unstable. Meanwhile, if m = 1, eigenvalues satisfy λ = −Ñ or

(Ñ − 1)β + (β − ω)α = 0. (12)

Solutions of Eq. (12) are

λ = 0,−[1− (Ñ − 1)ω]. (13)

Therefore, in the case of m = 1, the condition of linear stability is ω ≤ (Ñ−1)−1,
that is,

v ≥ Ñ , ρp ≤ 1

Ñ
. (14)

This means that the fixed point ρi(t) = ρ∗i is linearly unstable as N → ∞.
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2.4 Macroscopic fundamental diagram

According to the results in Sec. 2.3, we discuss MFDs in this model.
Here we consider the case n streets are completely jammed and the time-

independent fixed point ρi(t) = ρ∗i is linearly stable. In the case of N − n > v,
all of the (N − n) streets are free, and ρ∗i = ρf and q∗i = vρf for those streets.
Therefore the average vehicle density becomes

ρ̄ =
(N − n)ρf + n

N
, (15)

and MFD q̄N (ρ̄) satisfies

q̄N (ρ̄) =
(N − n)vρf

N
=

(N − n)v

N

Nρ̄− n

N − n
= v

(
ρ̄− n

N

)
. (16)

Meanwhile, the fixed point is linearly stable for N − n ≤ v if, at least,
(N − n − 1) streets are free. If (N − n) streets are free, that is, n/N ≤ ρ̄ ≤
[(N −n)v−1 +n]/N , MFD is again given by Eq. (16). Hereafter we consider the
case that (N − n− 1) streets are free and the other street is jammed.

If we write vehicle density of free streets by ρ∗i = ρf , their flow rate is q∗i = vρf .
Because flow rates of jammed street and free streets are the same, vehicle density
of jammed street is ρ∗i = 1 − (v/w)ρf = 1 − (v − 1)ρf , and the average vehicle
density satisfies

ρ̄ =
(N − n− 1)ρf + [1− (v − 1)ρf ] + n

N
=

(N − n− v)ρf + n+ 1

N
. (17)

Therefore, MFD q̄N (ρ̄) in this case is

q̄N (ρ̄) =
(N − n)vρf

N
=

(N − n)v

N

Nρ̄− n− 1

N − n− v

= − (N − n)v

v − (N − n)

(
ρ̄− n+ 1

N

)
(18)

In summary, MFD of this nonlinear circuit model is given by

q̄N (ρ̄) =

N−1∑
n=0

q̄N,n(ρ̄), (19)

q̄N,n(ρ̄) =


v

(
ρ̄− n

N

)
if max

{
ρn−1,

n

N

}
≤ ρ̄ < ρn,

− (N − n)v

v − (N − n)

(
ρ̄− n+ 1

N

)
if ρn ≤ ρ̄ <

n+ 1

N
,

0 otherwise,

(20)

where

ρn =
1

v
+

n

N

(
1− 1

v

)
, ρ−1 = 0 (21)
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Fig. 3. Macroscopic fundamental diagram in the nonlinear circuit model in the case
of v = 10/3, or ρp = 0.3. This is given by Eq. (19) and (20). Bold line is fundamental
diagram of each street, which is give by Eq. (1).

Figure 3 shows the results for v = 10/3. As shown in this figure, MFD con-
tainsN peaks, and it is discontinuous for largeN . This discontinuity corresponds
to the fact one of streets in the system becomes completely jammed. It is also
shown that MFD becomes similar to FD of each street for large N . Actually the
following theorem can be proved.

Theorem 1. Here we consider street network with one intersection and N streets,
whose fundamental diagram is q(ρ). Let us denote the macroscopic fundamental
diagram in the nonlinear circuit model as q̄N (ρ̄), sequence of functions {q̄N}N
are convergent uniformly to the fundamental diagram q.

Proof. First, we obtain q(ρ̄)− q̄N,0(ρ̄) = 0 for 0 ≤ ρ̄ < ρ0 = 1/v.

Next, for n ≥ 1 and ρ̄ ∈ LN,n = [max{ρn−1, n/N}, ρn), we get

q(ρ̄)− q̄N,n(ρ̄) =
v

v − 1
(1− ρ̄)− v

(
ρ̄− n

N

)
= − v2

v − 1
ρ̄+

v

v − 1
+ v

n

N
. (22)

Because this is monotonically decreasing as increasing ρ̄, we obtain

sup
ρ̄∈LN,n

{q(ρ̄)− q̄N,n(ρ̄)} =


v

N
if ρn−1 >

n

N
,

v

v − 1

(
1− n

N

)
otherwise.

(23)



Macroscopic fundamental diagram in simple street networks 9

For any n, ρn−1 > n/N does always hold if we select an integer N such that
N > n− 1 + v. Therefore, we conclude

lim
N→∞

sup
ρ̄∈LN,n

{q(ρ̄)− q̄N,n(ρ̄)} = lim
N→∞

v

N
= 0. (24)

Moreover, for any n, ρn > (n+1)/N does always hold if we select an integer
N such that N > n+ v. Therefore, RN,n =

[
ρn, (n+1)/N

)
goes to a null set as

N → ∞.
Summarizing, we obtain

lim
N→∞

sup
0≤ρ̄≤1

{q(ρ̄)− q̄N (ρ̄)}

= lim
N→∞

max
n

sup
ρ̄∈LN,n∪RN,n

{q(ρ̄)− q̄N,n(ρ̄)}

= 0 (25)

and we conclude that {q̄N}N converges to q uniformly.

3 Optimal Velocity Model

The nonlinear circuit model dicussed in Sec. 2 might be criticized that it is too
simple to discuss real urban traffic. Therefore we perform simulations using the
optimal velocity (OV) model [12, 13] to consider MFD in more realistic urban
traffic.

3.1 Model

We consider street network with N streets with length L, as shown in Fig. 1.
Each street is assumed to have single-lane and be unidirectional. We label ni

vehicles on a street i from the latter to the former such as k = 1, 2, . . . , ni. If xik

is position of a vehicle k in a street i, the equation of motion of each vehicle is
given by

ẍik = a[U(xi,k+1 − xik)− ẋik], (26)

where a is a constant sensitivity and U(b) is a so-called optimal velocity function

U(b) = tanh(b− 2) + tanh 2. (27)

For the top vehicle k = ni in a street i, the next street that the vehicle transfers
is randomly determined, and distance to the end vehicle in the next street,
xj,1 + (L− xi,ni

), is given as an argument of the OV function. Note that we set
the distance is the infinity if there is no vehicle in the next street.

The case N = 1 is a single-lane OV model with periodic boundary condition.
This has been studied very much numerically and analytically [3, 12–14]. The
fixed point x1,k = b̄k + U(b̄)t + const. with b̄ = L/n1 is known to be linearly
unstable if

a < 2U ′(b̄) =
2

cosh2(b̄− 2)
=

2

cosh2(ρ−1 − 2)
, (28)
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Fig. 4. Macroscopic fundamental diagram in the optimal velocity model. Solid points
and empty points are the cases a = 1.0 and 1.2, respectively. Black, red, and blue
points mean N = 1, 2, and 4, respectively.

that is,[
2 + log

(√
2

a
+

√
2

a
− 1

)]−1

< ρ <

[
2 + log

(√
2

a
−
√

2

a
− 1

)]−1

. (29)

The weakly nonlinear analysis around the fixed point gives the Korteweg-de-
Vries (KdV) equation and the modified KdV equation with perturbation terms
[14].

We perform simulations for the OV model in the N -street network. The 4-th
order Runge-Kutta scheme is used to solve Eq. (26) with time step ∆t = 10−3.
The length of each street is set L = 100. As initial conditions, the number of
vehicles on each street is given by ni = ρL, where ρ is the average vehicle density,
the distance between consecutive vehicles are the same xi,k+1 − xik = 1/ρ, and
velocity is given by ẋik = U(1/ρ) + δvik, where δvik is a uniformly distributed
random number satisfying −0.15 ≤ δvik < 0.15.

3.2 Macroscopic fundamental diagram

MFD of the OV model is shown in Fig. 4. The horizontal axis is the aver-
age vehicle density ρ, and the vertical axis shows the average flow rate q =
N−1

∑N
i=1

∑ni

k=1 ẋik/L in a steady state. In Fig. 4, we show results for N = 1,
2, 4, and a = 1, 1.2. Note that the number of samples for each data is only one.
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This results is different from those of the nonlinear circuit model very much.
First, the transition between the free-flow phase and the jammed phase is con-
tinuous. It is well known that (M)FD of the OV model with periodic boundary
condition has an inverse-λ shape, and the transition is discontinuous. However,
for N = 2, 4, the transition is continuous as shown in Fig. 4.

Next, it should be mentioned that the transition densities between free-flow
phase and jammed phase are not the same if we compare FD and MFD. In
the case of the nonlinear circuit model, the transition density ρ = ρp does not
change even if N is increased, as shown in Fig. 3. However, Fig. 4 shows the
transition densities for N = 2 and 4 are less than that for N = 1. Note that
we have another phase transition at higher density in the OV models, and this
transition densities for N = 2, 4 are greater than that for N = 1.

Moreover, it is interesting that the average flow rates in jammed phase for
N = 2, 4 are almost constant and less than that for N = 1. This behavior is
reported in the study of cellular automaton models [15, 16]. Note that MFD in
the nonlinear circuit model has multiple peaks. It is not strange that MFD in
this OV model does not have such multiple peaks because jammed streets does
not become completely jamed in this model.

4 Summary

In this study, we discuss macroscopic fundamental diagram (MFD) in simple
street networks in order to understand MFDs observed in real urban traffic.
While MFD in the nonlinear circuit model is discontinuous, MFD in the OV
model is continuous. The reason of discontinuous MFD in the nonlinear circuit
model is decrement of the number of streets to be able to enter vehicles at
the intersection. Because vehicles can enter jammed streets even if their vehicle
density is very high, this is a possibility to explain the continuous MFD in the OV
model. We would study to change the rule of vehicle transfers at an intersection
in near future.

Moreover, in our previous work, it is found that MFD of the nonlinear circuit
model becomes discontinuous in the case of grid street network [8]. Therefore, it
would be interesting to study MFD of the OV model in more complicated street
networks.
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